On the first eigenvalue of the Witten–Laplacian and the diameter of compact shrinking solitons
详细信息    查看全文
  • 作者:Akito Futaki (1)
    Haizhong Li (2)
    Xiang-Dong Li (3)
  • 关键词:Witten–Laplacian ; Eigenvalue ; Shrinking Ricci solitons ; Self ; similar shrinker ; Diameter
  • 刊名:Annals of Global Analysis and Geometry
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:44
  • 期:2
  • 页码:105-114
  • 全文大小:154KB
  • 参考文献:1. Andrews, B., Ni, L.: Eigenvalue comparison on Bakry–Emery manifolds, to appear in Comm. Partial Differential Equations. arxiv1111.4967v1
    2. Bakry, D., Emery, M.: Diffusion hypercontractives, Sém. Prob. XIX, Lect. Notes in Math. 1123, pp.?177-06 (1985)
    3. Bakry, D., Ledoux, M.: Lévry–Gromov’s isopermetric inequality for an infinite dimensional diffusion operator. Invent. Math. 123, 259-81 (1996)
    4. Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li–Yau parabolic inequality. Rev. Mat. Iberoam. 22(2), 683-02 (2006) CrossRef
    5. Bakry, D., Qian, Z.-M.: Some new results on eigenvectors via dimension, diameter, and Ricci curvature. Adv. in Math. 155, 98-53 (2000) CrossRef
    6. Bakry, D., Qian, Z.-M.: Qian, Harnack inequalities on a manifold with positive or negative Ricci curvature. Rev. Math. Iberoam 15(1), 143-79 (1999) CrossRef
    7. Bérard, P.-H.: Spectral Geometry, Direct and Inverse Problem, Lect. Notes in Math. 1207, Springer-Verlag, New York (1986)
    8. Cao, H.-D.: Geometry of complete gradient shrinking Ricci solitons, Adv. Lect. Math., vol. 17, pp.?227-46. International Press, Somerville (2011)
    9. Cao, H.-D., Li, H.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. PDE (2012). arXiv: 1101.0516v2. doi:10.1007/s00526-012-0508-1
    10. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Orlando (1984)
    11. Chen, M.-F., Wang, F.-Y.: Application of coupling method to the first eigenvalue on manifolds. Sci. Sinica (A) 37, 1-4 (1994)
    12. Chen, M.-F., Wang, F.-Y.: General formula for lower bound of the first eigenvalue on Riemannian manifolds. Sci. Sinica (A) 40, 384-94 (1997)
    13. Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I: generic singularities. Ann. of Math. (2) 175(2), 755-33 (2012). arXiv: 0908.3788v1 CrossRef
    14. Fang, F., Li, X.-D., Zhang, Z.-L.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Emery Ricci curvature. Ann. Inst. Fourier (Grenoble) 59(2), 563-73 (2009) CrossRef
    15. Futaki, A., Hattori, K., Yamamoto, H.: Self-similar solutions to the mean curvature flows on Riemannian cone manifolds and special Lagrangians on toric Calabi–Yau cones. arXiv:1112.5933
    16. Futaki, A., Sano, Y.: Lower diameter bounds for compact shrinking Ricci solitons, to appear in Asian J. Math. arXiv:1007.1759v1.
    17. Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom. 31(1), 285-99 (1990)
    18. Li, H., Wei, Y.: Lower volume growth estimates for self-shrinkers of mean curvature flow. arXiv: 1112.0828v3, to appear in Proceedings of Amer. Math. Soc
    19. Li, X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84, 1295-361 (2005)
    20. Li, X. -D.: Perelman’s entropy formula for the Witten Laplacian on Riemannian manifolds via Bakry–Emery Ricci curvature, Math. Ann. 353(2), 403-37 (2012)
    21. Li, P., Yau, S.-T.: Estimates of eigenvalues of a compact Riemannian manifold. Proc. Symp. Pure Math. 36, 205-39 (1980) CrossRef
    22. Lichnerowicz, A.: Géométrie des Groupes des Transformations. Dunod, Paris (1958)
    23. Lu, Z., Rowlett, J.: Eigenvalues of collapsing domains and drift Laplacians. arXiv:1003.0191v3
    24. Munteanu, O., Wang, J.: Smooth metric measure spaces with non-negative curvature. arxiv.1103.0746v2
    25. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. http://arXiv.org/abs/maths0211159
    26. Qian, Z.-M.: Estimates for weight volumes and applications. Quart. J. Math. Oxford Ser. 48, 235-42 (1987) CrossRef
    27. Qian, Z.-M., Zhang, H.-C., Zhu, X.-P.: Sharp spectral gap and Li–Yau’s estimate on Alexandrov spaces. arxiv:1102.4159v1
    28. Shi, Y.-M., Zhang, H.-C.: Lower bounds for the first eigenvalue on compact manifolds. Chinese Ann. Math. Ser. A 28(6), 863-66 (2007)
    29. Schoen, R., Yau, S.-T.: Lectures on Differential Geometry. International Press, Cambridge (1994)
    30. Villani, C.: Optimal Transportation: Old and New. Springer, Berlin (2009) CrossRef
    31. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differential Geom. 83, 377-05 (2009)
    32. Zhong, J.-Q., Yang, H.-C.: On the estimate of the first eigenvalue of a compact Riemannian manifold. Sci. Sinica Ser. A 27(12), 1265-273 (1984)
  • 作者单位:Akito Futaki (1)
    Haizhong Li (2)
    Xiang-Dong Li (3)

    1. Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
    2. Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, People’s Republic of China
    3. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 55, Zhongguancun East Road, Beijing, 100190, People’s Republic of China
文摘
We prove a lower bound estimate for the first non-zero eigenvalue of the Witten–Laplacian on compact Riemannian manifolds. As an application, we derive a lower bound estimate for the diameter of compact gradient shrinking Ricci solitons. Our results improve some previous estimates which were obtained by the first author and Sano (Asian J Math, to appear), and by Andrews and Ni (Comm Partial Differential Equ, to appear). Moreover, we extend the diameter estimate to compact self-similar shrinkers of mean curvature flow.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700