Beyond nC60: strategies for identification of transformation products of fullerene oxidation in aquatic and biological samples
详细信息    查看全文
  • 作者:Benny F. G. Pycke (1)
    Tzu-Chiao Chao (1) (2)
    Pierre Herckes (2)
    Paul Westerhoff (3)
    Rolf U. Halden (1) (3)
  • 关键词:Polyhydroxylated fullerene ; Fullerene epoxide ; Biota ; Bioaccumulation ; Mass spectrometry
  • 刊名:Analytical and Bioanalytical Chemistry
  • 出版年:2012
  • 出版时间:November 2012
  • 年:2012
  • 卷:404
  • 期:9
  • 页码:2583-2595
  • 全文大小:402KB
  • 参考文献:1. Wu H, Lin L, Wang P, Jiang S, Dai Z, Zou X (2011) Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application. Chem Commun (Camb) 47(38):10659鈥?0661
    2. Bosi S, Da Ros T, Spalluto G, Prato M (2003) Fullerene derivatives: an attractive tool for biological applications. Eur J Med Chem 38(11鈥?2):913鈥?23
    3. Osawa E (2002) Perspectives on fullerene nanotechnology. Kluwer Academic Publishers. Dordrecht, The Netherlands
    4. Hendren CO, Mesnard X, Droge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45(7):2562鈥?569
    5. Anctil A, Babbitt CW, Raffaelle RP, Landi BJ (2011) Material and energy intensity of fullerene production. Environ Sci Technol 45(6):2353鈥?359
    6. Hadduck AN, Hindagolla V, Contreras AE, Li QL, Bakalinsky AT (2010) Does Aqueous Fullerene Inhibit the Growth of Saccharomyces cerevisiae or Escherichia coli? Appl Environ Microbiol 76(24):8239鈥?242
    7. Matsuda S, Matsui S, Shimizu Y, Matsuda T (2011) Genotoxicity of colloidal fullerene C. Environ Sci Technol 45(9):4133鈥?138
    8. Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Nishi K, Kadoya C, Todoroki M, Yamamoto M, Murakami M, Shimada M, Wang WN, Yamamoto K, Fujita K, Endoh S, Uchida K, Shinohara N, Nakanishi J, Tanaka I (2010) Inflammogenic effect of well-characterized fullerenes in inhalation and intratracheal instillation studies. Part Fibre Toxicol 7
    9. Musee N, Thwala M, Nota N (2011) The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. J Environ Monit 13(5):1164鈥?183
    10. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C-60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27(9):1895鈥?903
    11. Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol 229(1):44鈥?5
    12. Lyon DY, Adams LK, Falkner JC, Alvarez PJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360鈥?366
    13. Sayes CM, Marchione AA, Reed KL, Warheit DB (2007) Comparative pulmonary toxicity assessments of C-60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett 7(8):2399鈥?406
    14. Kovochich M, Espinasse B, Auffan M, Hotze EM, Wessel L, Xia T, Nel AE, Wiesner MR (2009) Comparative toxicity of C60 aggregates toward mammalian cells: role of tetrahydrofuran (THF) decomposition. Environ Sci Technol 43(16):6378鈥?384
    15. Zhang B, Cho M, Fortner JD, Lee J, Huang CH, Hughes JB, Kim JH (2009) Delineating Oxidative Processes of Aqueous C-60 Preparations: Role of THF Peroxide. Environ Sci Technol 43(1):108鈥?13
    16. Lyon DY, Alvarez PJ (2008) Fullerene water suspension ( / nCub class="a-plus-plus">60ub>) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42(21):8127鈥?132
    17. Yan L, Zhao F, Li S, Hu Z, Zhao Y (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3(2):362鈥?82
    18. Sanchis J, Berrojalbiz N, Caballero G, Dachs J, Farre M, Barcelo D (2012) Occurrence of aerosol-bound fullerenes in the mediterranean sea atmosphere. Environ Sci Technol 46(3):1335鈥?343
    19. Benn TM, Westerhoff P, Herckes P (2011) Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159(5):1334鈥?342
    20. Gao J, Wang HL, Shreve A, Iyer R (2010) Fullerene derivatives induce premature senescence: a new toxicity paradigm or novel biomedical applications. Toxicol Appl Pharmacol 244(2):130鈥?43
    21. Xia XR, Monteiro-Riviere NA, Riviere JE (2010) Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol 242(1):29鈥?7
    22. Ke PC, Lamm MH (2011) A biophysical perspective of understanding nanoparticles at large. Phys Chem Chem Phys 13(16):7273鈥?283
    23. Isakovic A, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Mirkovic M, Dramicanin M, Harhaji L, Raicevic N, Nikolic Z, Trajkovic V (2006) Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene. Toxicol Sci 91(1):173鈥?83
    24. Maeda-Mamiya R, Noiri E, Isobe H, Nakanishi W, Okamoto K, Doi K, Sugaya T, Izumi T, Homma T, Nakamura E (2010) In vivo gene delivery by cationic tetraamino fullerene. Proc Natl Acad Sci U S A 107(12):5339鈥?344
    25. Irie K, Nakamura Y, Ohigashi H, Tokuyama H, Yamago S, Nakamura E (1996) Photocytotoxicity of water-soluble fullerene derivatives. Biosci Biotechnol Biochem 60(8):1359鈥?361
    26. Harhaji L, Isakovic A, Vucicevic L, Janjetovic K, Misirkic M, Markovic Z, Todorovic-Markovic B, Nikolic N, Vranjes-Djuric S, Nikolic Z, Trajkovic V (2008) Modulation of tumor necrosis factor-mediated cell death by fullerenes. Pharm Res 25(6):1365鈥?376
    27. Patra M, Ma X, Isaacson C, Bouchard D, Poynton H, Lazorchak JM, Rogers KR (2011) Changes in agglomeration of fullerenes during ingestion and excretion in Thamnocephalus platyurus. Environ Toxicol Chem 30(4):828鈥?35
    28. Chae SR, Therezien M, Budarz JF, Wessel L, Lin SH, Xiao Y, Wiesner MR (2011) Comparison of the photosensitivity and bacterial toxicity of spherical and tubular fullerenes of variable aggregate size. J Nanopart Res 13(10):5121鈥?127
    29. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82(3):308鈥?17
    30. Perez S, Farre M, Barcelo D (2009) Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends Anal Chem 28(6):820鈥?32
    31. Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticles in natural waters. Trends Anal Chem 30(1):72鈥?3
    32. Wiesner MR, Hotze EM, Brant JA, Espinasse B (2008) Nanomaterials as possible contaminants: the fullerene example. Water Sci Technol 57(3):305鈥?10
    33. Shinohara N, Nakazato T, Tamura M, Endoh S, Fukui H, Morimoto Y, Myojo T, Shimada M, Yamamoto K, Tao H, Yoshida Y, Nakanishi J (2010) Clearance kinetics of fullerene C nanoparticles from rat lungs after intratracheal C instillation and inhalation C exposure. Toxicol Sci 118(2):564鈥?73
    34. Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133鈥?139
    35. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N (2012) Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ Sci Technol 46(4):2242鈥?250
    36. Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA (2008) Inhalation toxicity and lung toxicokinetics of C-60 fullerene nanoparticles and microparticles. Toxicol Sci 101(1):122鈥?31
    37. Rajagopalan P, Wudl F, Schinazi RF, Boudinot FD (1996) Pharmacokinetics of a water-soluble fullerene in rats. Antimicrob Agents Chemother 40(10):2262鈥?265
    38. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V (2010) The Biological Mechanisms and Physicochemical Characteristics Responsible for Driving Fullerene Toxicity. Toxicol Sci 114(2):162鈥?82
    39. Aschberger K, Johnston HJ, Stone V, Aitken RJ, Tran CL, Hankin SM, Peters SA, Christensen FM (2010) Review of fullerene toxicity and exposure鈥攁ppraisal of a human health risk assessment, based on open literature. Regul Toxicol Pharmacol 58(3):455鈥?73
    40. Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336鈥?345
    41. Lee TH, Yao N, Chen TJ, Hsu WK (2002) Fullerene-like carbon particles in petrol soot. Carbon 40(12):2275鈥?279
    42. Su Z, Zhou W, Zhang Y (2011) New insight into the soot nanoparticles in a candle flame. Chem Commun (Camb) 47(16):4700鈥?702
    43. Murr LE, Soto KF (2005) A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources. Mater Charact 55(1):50鈥?5
    44. Buseck PR, Tsipursky SJ, Hettich R (1992) Fullerenes from the geological environment. Science 257(5067):215鈥?17
    45. Farre M, Perez S, Gajda-Schrantz K, Osorio V, Kantiani L, Ginebreda A, Barcelo D (2010) First determination of C-60 andC(70) fullerenes and N-methylfulleropyrrolidine C-60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. J Hydrol 383(1鈥?):44鈥?1
    46. Koelmans AA, Nowack B, Wiesner MR (2009) Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments. Environ Pollut 157(4):1110鈥?116
    47. Heymann D (1996) Solubility of fullerenes C-60 and C-70 in seven normal alcohols and their deduced solubility in water. Fuller Sci Technol 4:509鈥?15
    48. Bouchard D, Ma X, Isaacson C (2009) Colloidal properties of aqueous fullerenes: isoelectric points and aggregation kinetics of C60 and C60 derivatives. Environ Sci Technol 43(17):6597鈥?603
    49. Duncan LK, Jinschek JR, Vikesland PJ (2008) C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Environ Sci Technol 42(1):173鈥?78
    50. Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17(4):287鈥?14
    51. Chen KL, Smith BA, Ball WP, Fairbrother DH (2010) Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C-60 nanoparticles and carbon nanotubes. Environ Chem 7(1):10鈥?7
    52. Ma X, Bouchard D (2009) Formation of aqueous suspensions of fullerenes. Environ Sci Technol 43(2):330鈥?36
    53. Qu X, Hwang YS, Alvarez PJ, Bouchard D, Li Q (2010) UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC) nanoparticles. Environ Sci Technol 44(20):7821鈥?826
    54. Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22(26):10994鈥?1001
    55. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C-60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309(1):126鈥?34
    56. Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electrokinetic properties. Environ Sci Technol 43(19):7270鈥?276
    57. Chen KL, Elimelech M (2008) Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ Sci Technol 42(20):7607鈥?614
    58. Andrievsky GV, Klochkov VK, Bordyuh AB, Dovbeshko GI (2002) Comparative analysis of two aqueous-colloidal solutions of C-60 fullerene with help of FTIR reflectance and UV鈥揤is spectroscopy. Chem Phys Lett 364(1鈥?):8鈥?7
    59. Labille J, Masion A, Ziarelli F, Rose J, Brant J, Villieras F, Pelletier M, Borschneck D, Wiesner MR, Bottero JY (2009) Hydration and dispersion of C60 in aqueous systems: the nature of water鈥揻ullerene interactions. Langmuir 25(19):11232鈥?1235
    60. Pospisil L, Gal M, Hromadova M, Bulickova J, Kolivoska V, Cvacka J, Novakova K, Kavan L, Zukalova M, Dunsch L (2010) Search for the form of fullerene C(60) in aqueous medium. Phys Chem Chem Phys 12(42):14095鈥?4101
    61. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43(24):9216鈥?222
    62. Tiede K, Hassellov M, Breitbarth E, Chaudhry Q, Boxall AB (2009) Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A 1216(3):503鈥?09
    63. van Wezel AP, Moriniere V, Emke E, ter Laak T, Hogenboom AC (2011) Quantifying summed fullerene nC(60) and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples. Environ Int 37(6):1063鈥?067
    64. Wang C, Shang C, Westerhoff P (2010) Quantification of fullerene aggregate / nCub class="a-plus-plus">60ub> in wastewater by high-performance liquid chromatography with UV鈥搗is spectroscopic and mass spectrometric detection. Chemosphere 80(3):334鈥?39
    65. Kummerer K, Menz J, Schubert T, Thielemans W (2011) Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere 82(10):1387鈥?392
    66. Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44(14):4105鈥?114
    67. Wang Y, Westerhoff P, Hristovski KD (2012) Fate and biological effects of silver, titanium dioxide, and C (fullerene) nanomaterials during simulated wastewater treatment processes. J Hazard Mater 201鈥?02:16鈥?2
    68. Mukherji ST, Leisen J, Hughes JB (2011) Removal and biosorption of C from water by an aquatic plant, Ceratophyllum sp. Chemosphere 84(4):390鈥?96
    69. Shareef A, Li GH, Kookana RS (2010) Quantitative determination of fullerene (C-60) in soils by high performance liquid chromatography and accelerated solvent extraction technique. Environ Chem 7(3):292鈥?97
    70. Wang J, Cai Q, Fang Y, Anderson TA, Cobb GP (2011) Determination of fullerenes (C60) in artificial sediments by liquid chromatography. Talanta 87:35鈥?9
    71. Zhang L, Wang L, Zhang P, Kan AT, Chen W, Tomson MB (2011) Facilitated Transport of 2,2',5,5'-Polychlorinated Biphenyl and Phenanthrene by Fullerene Nanoparticles through Sandy Soil Columns. Environ Sci Technol 45(4):1341鈥?348
    72. Pan B, Lin D, Mashayekhi H, Xing B (2008) Adsorption and hysteresis of bisphenol A and 17alpha-ethinyl estradiol on carbon nanomaterials. Environ Sci Technol 42(15):5480鈥?485
    73. Baena JR, Gallego M, Valcarcel M (2002) Fullerenes in the analytical sciences. Trends Anal Chem 21(3):187鈥?98
    74. Vallant RM, Szabo Z, Bachmann S, Bakry R, Najam-ul-Haq M, Rainer M, Heigl N, Petter C, Huck CW, Bonn GK (2007) Development and application of C60-fullerene bound silica for solid-phase extraction of biomolecules. Anal Chem 79(21):8144鈥?153
    75. Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38(19):5164鈥?169
    76. Taylor R, Parsons JP, Avent AG, Rannard SP, Dennis TJ, Hare JP, Kroto HW, Walton DRM (1991) Degradation of Cub class="a-plus-plus">60ub> by light. Nature 351:277
    77. Hou WC, Jafvert CT (2009) Photochemical transformation of aqueous C60 clusters in sunlight. Environ Sci Technol 43(2):362鈥?67
    78. Hwang YS, Li Q (2010) Characterizing photochemical transformation of aqueous / nCub class="a-plus-plus">60ub> under environmentally relevant conditions. Environ Sci Technol 44(8):3008鈥?013
    79. Lee I, Mackeyev Y, Cho M, Li D, Kim JH, Wilson LJ, Alvarez PJ (2009) Photochemical and antimicrobial properties of novel C60 derivatives in aqueous systems. Environ Sci Technol 43(17):6604鈥?610
    80. Hou WC, Jafvert CT (2009) Photochemistry of Aqueous C(60) Clusters: Evidence of (1)O(2) Formation and its Role in Mediating C(60) Phototransformation. Environ Sci Technol 43(14):5257鈥?262
    81. Schuster DI, Baran PS, Hatch RK, Khan AU, Wilson SR (1998) The role of singlet oxygen in the photochemical formation of C60O. Chem Commun 22:2493鈥?494
    82. Malhotra R, Kumar S, Satyam A (1994) Ozonolysis of [60]Fullerene. J Chem Soc Chem Commun 11:1339鈥?340
    83. Fortner JD, Kim DI, Boyd AM, Falkner JC, Moran S, Colvin VL, Hughes JB, Kim JH (2007) Reaction of water-stable C60 aggregates with ozone. Environ Sci Technol 41(21):7497鈥?502
    84. Lee J, Song W, Jang SS, Fortner JD, Alvarez PJ, Cooper WJ, Kim JH (2010) Stability of water-stable C60 clusters to OH radical oxidation and hydrated electron reduction. Environ Sci Technol 44(10):3786鈥?792
    85. Kong L, Tedrow O, Chan YF, Zepp RG (2009) Light-initiated transformations of fullerenol in aqueous media. Environ Sci Technol 43(24):9155鈥?160
    86. Schreiner KM, Filley TR, Blanchette RA, Bowen BB, Bolskar RD, Hockaday WC, Masiello CA, Raebiger JW (2009) White-rot basidiomycete-mediated decomposition of C60 fullerol. Environ Sci Technol 43(9):3162鈥?168
    87. Dordevic A, Bogdanovic G (2008) Fullerenol: a new nanopharmaceutic? Arch Oncol 16(3鈥?):42鈥?5
    88. Ringwood AH, Levi-Polyachenko N, Carroll DL (2009) Fullerene exposures with oysters: embryonic, adult, and cellular responses. Environ Sci Technol 43(18):7136鈥?141
    89. Brausch KA, Anderson TA, Smith PN, Maul JD (2010) Effects of functionalized fullerenes on bifenthrin and tribufos toxicity to Daphnia magna: Survival, reproduction, and growth rate. Environ Toxicol Chem 29(11):2600鈥?606
    90. Brausch KA, Anderson TA, Smith PN, Maul JD (2011) The effect of fullerenes and functionalized fullerenes on Daphnia magna phototaxis and swimming behavior. Environ Toxicol Chem 30(4):878鈥?84
    91. Zhu SQ, Oberdorster E, Haasch ML (2006) Toxicity of an engineered nanoparticle (fullerene, C-60) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 62:S5鈥揝9
    92. Tao X, Fortner JD, Zhang B, He Y, Chen Y, Hughes JB (2009) Effects of aqueous stable fullerene nanocrystals ( / nCub class="a-plus-plus">60ub>) on Daphnia magna: evaluation of sub-lethal reproductive responses and accumulation. Chemosphere 77(11):1482鈥?487
    93. Pakarinen K, Petersen EJ, Leppanen MT, Akkanen J, Kukkonen JV (2011) Adverse effects of fullerenes ( / nCub class="a-plus-plus">60ub>) spiked to sediments on Lumbriculus variegatus (Oligochaeta). Environ Pollut 159(12):3750鈥?756
    94. Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms. Ecotoxicol Environ Saf 71(3):616鈥?19
    95. Li D, Alvarez PJ (2011) Avoidance, weight loss, and cocoon production assessment for Eisenia fetida exposed to C in soil. Environ Toxicol Chem 30(11):2542鈥?545
    96. Isaacson CW, Usenko CY, Tanguay RL, Field JA (2007) Quantification of fullerenes by LC/ESI鈥揗S and its application to in vivo toxicity assays. Anal Chem 79(23):9091鈥?097
    97. Kim KT, Jang MH, Kim JY, Kim SD (2010) Effect of preparation methods on toxicity of fullerene water suspensions to Japanese medaka embryos. Sci Total Environ 408(22):5606鈥?612
    98. Blickley TM, McClellan-Green P (2008) Toxicity of aqueous fullerene in adult and larval Fundulus heteroclitus. Environ Toxicol Chem 27(9):1964鈥?971
    99. Daroczi B, Kari G, McAleer MF, Wolf JC, Rodeck U, Dicker AP (2006) In vivo radioprotection by the fullerene nanoparticle DF-1 as assessed in a zebrafish model. Clin Cancer Res 12(23):7086鈥?091
    100. Jovanovic B, Ji T, Palic D (2011) Gene expression of zebrafish embryos exposed to titanium dioxide nanoparticles and hydroxylated fullerenes. Ecotoxicol Environ Saf 74(6):1518鈥?525
    101. Zhu X, Zhu L, Li Y, Duan Z, Chen W, Alvarez PJ (2007) Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates ( / nCub class="a-plus-plus">60ub>) and fullerol. Environ Toxicol Chem 26(5):976鈥?79
    102. Gao J, Wang Y, Folta KM, Krishna V, Bai W, Indeglia P, Georgieva A, Nakamura H, Koopman B, Moudgil B (2011) Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS One 6(5):e19976
    103. Nikolic N, Vranjes-Ethuric S, Jankovic D, Ethokic D, Mirkovic M, Bibic N, Trajkovic V (2009) Preparation and biodistribution of radiolabeled fullerene C60 nanocrystals. Nanotechnology 20(38):385102
    104. Li D, Fortner JD, Johnson DR, Chen C, Li Q, Alvarez PJ (2010) Bioaccumulation of 14C60 by the earthworm Eisenia fetida. Environ Sci Technol 44(23):9170鈥?175
    105. Petersen EJ, Huang Q, Weber WJ Jr (2008) Bioaccumulation of radio-labeled carbon nanotubes by Eisenia foetida. Environ Sci Technol 42(8):3090鈥?095
    106. Benn TM, Pycke BF, Herckes P, Westerhoff P, Halden RU (2011) Evaluation of extraction methods for quantification of aqueous fullerenes in urine. Anal Bioanal Chem 399(4):1631鈥?639
    107. Vileno B, Marcoux PR, Lekka M, Sienkiewicz A, Feher T, Forro L (2006) Spectroscopic and photophysical properties of a highly derivatized C-60 fullerol. Adv Funct Mater 16(1):120鈥?28
    108. Isaacson CW, Kleber M, Field JA (2009) Quantitative analysis of fullerene nanomaterials in environmental systems: a critical review. Environ Sci Technol 43(17):6463鈥?474
    109. Chao TC, Song G, Hansmeier N, Westerhoff P, Herckes P, Halden RU (2011) Characterization and Liquid Chromatography鈥揗S/MS Based Quantification of Hydroxylated Fullerenes. Anal Chem 83(5):1777鈥?783
    110. Takahashi H, Tohji K, Matsuoka I, Jeyadevan B, Kasuya A, Ito S, Nishina Y, Nirasawa T (1998) Extraction and purification of dimeric fullerene oxides from fullerene soot. J Phys Chem B 102(28):5438鈥?443
    111. Moonen NNP, Thilgen C, Echegoyen L, Diederich F (2000) The chemical retro-Bingel reaction: selective removal of bis(alkoxycarbonyl)methano addends from C-60 and C-70 with amalgamated magnesium. Chem Commun 5:335鈥?36
    112. Mart铆n N, Segura JL, Wudl F (2002) In: Guldi DM, Martin N (eds) Fullerenes: from synthesis to optoelectronic properties. Kluwer Academic Publishers, Dordrecht, pp 81鈥?20
    113. Filippone S, Izquierdo Barroso M, Mart铆n-Domenech A, Osuna S, Sol脿 M, Mart铆n N (2008) On the Mechanism of the Thermal Retrocycloaddition of Pyrrolidinofullerenes (Retro-Prato Reaction). Chem Eur J 14:5198鈥?206
    114. Naim A, Shevlin PB (1992) Reversible addition of hydroxide to the fullerenes. Tetrahedron Lett 33(47):7097鈥?100
    115. Xing GM, Zhang J, Zhao YL, Tang J, Zhang B, Gao XF, Yuan H, Qu L, Cao WB, Chai ZF, Ibrahim K, Su R (2004) Influences of structural properties on stability of fullerenols. J Phys Chem B 108(31):11473鈥?1479
    116. Goswami TK, Singh R, Alam S, Mathur GN (2004) Thermal analysis: a unique method to estimate the number of substituents in fullerene derivatives. Thermochim Acta 419(1鈥?):97鈥?04
    117. Delhomme O, Herckes P, Millet M (2007) Determination of nitro-polycyclic aromatic hydrocarbons in atmospheric aerosols using HPLC fluorescence with a post-column derivatisation technique. Anal Bioanal Chem 389(6):1953鈥?959
    118. Creegan KM, Robbins JL, Robbins WK, Millar JM, Sherwood RD, Tindall PJ, Cox DM, Smith AB, Mccauley JP, Jones DR, Gallagher RT (1992) Synthesis and Characterization of (C60)O, the 1st Fullerene Epoxide. J Am Chem Soc 114(3):1103鈥?105
    119. Chiang LY, Upasani RB, Swirczewski JW, Soled S (1993) Evidence of Hemiketals Incorporated in the Structure of Fullerols Derived from Aqueous Acid Chemistry. J Am Chem Soc 115(13):5453鈥?457
    120. Chiang LY, Bhonsle JB, Wang LY, Shu SF, Chang TM, Hwu JR (1996) Efficient one-flask synthesis of water-soluble [60]fullerenols. Tetrahedron 52(14):4963鈥?972
    121. Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T (2008) Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2(2):327鈥?33
    122. Li J, Takeuchi A, Ozawa M, Li XH, Saigo K, Kitazawa K (1993) C-60 Fullerol Formation Catalyzed by Quaternary Ammonium Hydroxides. J Chem Soc Chem Commun 23:1784鈥?785
    123. Troshin PA, Astakhova AS, Lyubovskaya RN (2005) Synthesis of fullerenols from halofullerenes. Fuller Nanotub Carbon N 13:331鈥?43
    124. Xia XR, Monteiro-Riviere NA, Riviere JE (2006) Trace analysis of fullerenes in biological samples by simplified liquid鈥搇iquid extraction and high-performance liquid chromatography. J Chromatogr A 1129(2):216鈥?22
    125. Pycke BF, Benn TM, Herckes P, Westerhoff P, Halden RU (2011) Strategies for quantifying C(60) fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal Chem 30(1):44鈥?7
    126. Zhou LH, Deng HM, Deng QY, Zheng LP, Cao Y (2005) Analysis of three different types of fullerene derivatives by laser desorption/ionization time-of-flight mass spectrometry with new matrices. Rapid Commun Mass Spectrom 19(23):3523鈥?530
    127. Hyung H, Kim JH (2009) Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes. Water Res 43(9):2463鈥?470
    128. Chen Z, Westerhoff P, Herckes P (2008) Quantification of C60 Fullerene Concentrations in Water. Environ Toxicol Chem 27(9):1852鈥?859
    129. Santa T, Yoshioka D, Homma H, Imai K, Satoh M, Takayanagi I (1995) High-Performance Liquid-Chromatography of Fullerence (C-60) in Plasma Using Ultraviolet and Mass-Spectrometric Detection. Biol Pharm Bull 18(9):1171鈥?174
    130. Moussa F, Pressac M, Genin E, Roux S, Trivin F, Rassat A, Ceolin R, Szwarc H (1997) Quantitative analysis of C60 fullerene in blood and tissues by high-performance liquid chromatography with photodiode-array and mass spectrometric detection. J Chromatogr B: Biomed Sci Appl 696(1):153鈥?59
    131. Bouchard D, Ma X (2008) Extraction and high-performance liquid chromatographic analysis of C60, C70, and [6, 6]-phenyl C61-butyric acid methyl ester in synthetic and natural waters. J Chromatogr A 1203(2):153鈥?59
    132. Isaacson CW, Bouchard D (2010) Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J Chromatogr A 1217(9):1506鈥?512
    133. Kawano S, Murata H, Mikami H, Mukaibatake K, Waki H (2006) Method optimization for analysis of fullerenes by liquid chromatography/atmospheric pressure photoionization mass spectrometry. Rapid Commun Mass Spectrom 20(18):2783鈥?785
  • 作者单位:Benny F. G. Pycke (1)
    Tzu-Chiao Chao (1) (2)
    Pierre Herckes (2)
    Paul Westerhoff (3)
    Rolf U. Halden (1) (3)

    1. Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, 1001 S. McAllister Avenue, P. O. Box 875701, Tempe, AZ, 85287, USA
    2. Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85287, USA
    3. School of Sustainable Engineering and The Built Environment, Arizona State University, Tempe, AZ, 85287, USA
  • ISSN:1618-2650
文摘
Owing to their exceptional properties and versatility, fullerenes are in widespread use for numerous applications. Increased production and use of fullerenes will inevitably result in accelerated environmental release. However, study of the occurrence, fate, and transport of fullerenes in the environment is complicated because a variety of surface modifications can occur as a result of either intentional functionalization or natural processes. To gain a better understanding of the effect and risk of fullerenes on environmental health, it is necessary to acquire reliable data on the parent compounds and their congeners. Whereas currently established quantification methods generally focus on analysis of unmodified fullerenes, we discuss in this review the occurrence and analysis of oxidized fullerene congeners (i.e., their corresponding epoxides and polyhydroxylated derivatives) in the environment and in biological specimens. We present possible strategies for detection and quantification of parent nanomaterials and their various derivatives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700