From Repair to Regeneration: Biomaterials to Reprogram the Meniscus Wound Microenvironment
详细信息    查看全文
  • 作者:Robert L. Mauck (1) (3)
    Jason A. Burdick (2) (3)

    1. McKay Orthopaedic Research Laboratory
    ; Department of Orthopaedic Surgery ; Perelman School of Medicine ; University of Pennsylvania ; 424 Stemmler Hall ; 36th Street and Hamilton Walk ; Philadelphia ; PA ; 19104 ; USA
    3. Translational Musculoskeletal Research Center
    ; Philadelphia VA Medical Center ; Philadelphia ; PA ; 19104 ; USA
    2. Department of Bioengineering
    ; University of Pennsylvania ; 240 Skirkanich Hall ; 210 W. 33rd Street ; Philadelphia ; PA ; 19104 ; USA
  • 关键词:Meniscus ; Biomaterials ; Wound healing ; Regeneration ; Scaffold ; Extracellular matrix
  • 刊名:Annals of Biomedical Engineering
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:43
  • 期:3
  • 页码:529-542
  • 全文大小:2,322 KB
  • 参考文献:1. Adams, ME, Hukins, DWL The extracellular matrix of the meniscus. In: Mow, VC, Arnoczky, SP, Jackson, DW eds. (1992) Knee Meniscus: Basic and Clinical Foundations. Raven Press, Ltd., New York, pp. 15-28
    2. Ahmed, AM The load-bearing role of the knee meniscus. In: Mow, VC, Arnoczky, SP, Jackson, DW eds. (1992) Knee Meniscus: Basic and Clinical Foundations. Raven Press, Ltd., New York, pp. 59-73
    3. Andrish, JT (1996) Meniscal injuries in children and adolescents: diagnosis and management. J. Am. Acad. Orthop. Surg. 4: pp. 231-237
    4. Arnoczky, SP, Warren, RF (1982) Microvasculature of the human meniscus. Am. J. Sports Med. 10: pp. 90-95
    5. Baker, BM, Gee, AO, Metter, RB, Nathan, AS, Marklein, RA, Burdick, JA (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29: pp. 2348-2358
    6. Baker, BM, Mauck, RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28: pp. 1967-1977
    7. Baker, BM, Nerurkar, NL, Burdick, JA, Elliott, DM, Mauck, RL (2009) Fabrication and modeling of dynamic multipolymer nanofibrous scaffolds. J. Biomech. Eng. 131: pp. 101012
    8. Baker, BM, Shah, RP, Huang, AH, Mauck, RL (2011) Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng. Part A 17: pp. 1445-1455
    9. Baker, BM, Shah, RP, Silverstein, AM, Esterhai, JL, Burdick, JA, Mauck, RL (2012) Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc. Natl. Acad. Sci. USA 109: pp. 14176-14181
    10. Barrett, GR, Field, MH, Treacy, SH, Ruff, CG (1998) Clinical results of meniscus repair in patients 40聽years and older. Arthroscopy 14: pp. 824-829
    11. Bartova, E, Krejci, J, Harnicarova, A, Kozubek, S (2008) Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation 76: pp. 24-32
    12. Beredjiklian, PK, Favata, M, Cartmell, JS, Flanagan, CL, Crombleholme, TM, Soslowsky, LJ (2003) Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Ann. Biomed. Eng. 31: pp. 1143-1152
    13. Bhattacharya, D, Talwar, S, Mazumder, A, Shivashankar, GV (2009) Spatio-temporal plasticity in chromatin organization in mouse cell differentiation and during Drosophila embryogenesis. Biophys. J . 96: pp. 3832-3839
    14. Booth-Gauthier, EA, Du, V, Ghibaudo, M, Rape, AD, Dahl, KN, Ladoux, B (2013) Hutchinson-Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates. Integr. Biol. (Camb.) 5: pp. 569-577
    15. Bott, K, Upton, Z, Schrobback, K, Ehrbar, M, Hubbell, JA, Lutolf, MP (2010) The effect of matrix characteristics on fibroblast proliferation in 3D gels. Biomaterials 31: pp. 8454-8464
    16. Burdick, JA, Murphy, WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat. Commun. 3: pp. 1269
    17. Clark, CR, Ogden, JA (1983) Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J. Bone Joint Surg. Am. 65: pp. 538-547
    18. Connelly, JT, Garcia, AJ, Levenston, ME (2008) Interactions between integrin ligand density and cytoskeletal integrity regulate BMSC chondrogenesis. J. Cell. Physiol. 217: pp. 145-154
    19. Dahl, KN, Engler, AJ, Pajerowski, JD, Discher, DE (2005) Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J . 89: pp. 2855-2864
    20. Dahl, KN, Ribeiro, AJ, Lammerding, J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ. Res. 102: pp. 1307-1318
    21. Dai, M, Yang, Y, Omelchenko, I, Nuttall, AL, Kachelmeier, A, Xiu, R (2010) Bone marrow cell recruitment mediated by inducible nitric oxide synthase/stromal cell-derived factor-1alpha signaling repairs the acoustically damaged cochlear blood-labyrinth barrier. Am. J. Pathol. 177: pp. 3089-3099
    22. Day, B, Mackenzie, WG, Shim, SS, Leung, G (1985) The vascular and nerve supply of the human meniscus. Arthroscopy 1: pp. 58-62
    23. Dourte, LM, Kuntz, AF, Soslowsky, LJ (2008) Twenty-five years of tendon and ligament research. J. Orthop. Res. 26: pp. 1297-1305
    24. Doyle, AD, Petrie, RJ, Kutys, ML, Yamada, KM (2013) Dimensions in cell migration. Curr. Opin. Cell Biol. 25: pp. 642-649
    25. Eckhouse, SR, Purcell, BP, McGarvey, JR, Lobb, D, Logdon, CB, Doviak, H (2014) Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental myocardial infarction. Sci. Transl. Med. 6: pp. 223ra21
    26. Eggli, S, Wegmuller, H, Kosina, J, Huckell, C, Jakob, RP (1995) Long-term results of arthroscopic meniscal repair. An analysis of isolated tears. Am. J. Sports Med. 23: pp. 715-720
    27. Engler, AJ, Sen, S, Sweeney, HL, Discher, DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126: pp. 677-689
    28. Favata, M, Beredjiklian, PK, Zgonis, MH, Beason, DP, Crombleholme, TM, Jawad, AF (2006) Regenerative properties of fetal sheep tendon are not adversely affected by transplantation into an adult environment. J. Orthop. Res. 24: pp. 2124-2132
    29. Fisher, MB, Henning, EA, Soegaard, N, Esterhai, JL, Mauck, RL (2013) Organized nanofibrous scaffolds that mimic the macroscopic and microscopic architecture of the knee meniscus. Acta Biomater. 9: pp. 4496-4504
    30. Friedl, P, Sahai, E, Weiss, S, Yamada, KM (2012) New dimensions in cell migration. Nat. Rev. Mol. Cell Biol. 13: pp. 743-747
    31. Friedl, P, Wolf, K, Lammerding, J (2011) Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23: pp. 55-64
    32. Fu, Y, Chin, LK, Bourouina, T, Liu, AQ, VanDongen, AM (2012) Nuclear deformation during breast cancer cell transmigration. Lab Chip 12: pp. 3774-3778
    33. Greiner, AM, Jackel, M, Scheiwe, AC, Stamow, DR, Autenrieth, TJ, Lahann, J (2014) Multifunctional polymer scaffolds with adjustable pore size and chemoattractant gradients for studying cell matrix invasion. Biomaterials 35: pp. 611-619
    34. Greis, PE, Holmstrom, MC, Bardana, DD, Burks, RT (2002) Meniscal injury: II. Management. J. Am. Acad. Orthop. Surg. 10: pp. 177-187
    35. Guilak, F, Tedrow, JR, Burgkart, R (2000) Viscoelastic properties of the cell nucleus. Biochem. Biophys. Res. Commun. 269: pp. 781-786
    36. Han, WM, Heo, SJ, Driscoll, TP, Smith, LJ, Mauck, RL, Elliott, DM (2013) Macro- to microscale strain transfer in fibrous tissues is heterogeneous and tissue-specific. Biophys. J . 105: pp. 807-817
    37. Harada, T, Swift, J, Irianto, J, Shin, JW, Spinler, KR, Athirasala, A (2014) Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204: pp. 669-682
    38. Hennerbichler, A, Moutos, F, Hennerbichler, D, Fermor, B, Weinberg, JB, Guilak, F (2006) Inhibition of integrative repair of the meniscus in vitro by interleukin-1 and tumor necrosis factor alpha. Trans. ORS 31: pp. 1038
    39. Hennerbichler, A, Moutos, FT, Hennerbichler, D, Weinberg, JB, Guilak, F (2007) Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthritis Cartilage 15: pp. 1053-1060
    40. Heo, S. J., T. P. Driscoll, S. D. Thorpe, W. M. Han, D. M. Elliott, D. A. Lee, et al. Rapid chromatin condensation increases stem cell nuclear mechanics and mechanosensitivity. / Trans. Orthop. Res. Soc. 60:457, 2014.
    41. Heo, SJ, Nerurkar, NL, Baker, BM, Shin, JW, Elliott, DM, Mauck, RL (2011) Fiber stretch and reorientation modulates mesenchymal stem cell morphology and fibrous gene expression on oriented nanofibrous microenvironments. Ann. Biomed. Eng. 39: pp. 2780-2790
    42. Heo, S. J., S. D. Thorpe, T. P. Driscoll, S. K. Hashmi, D. A. Lee, and R. L. Mauck. Rapid and sustained changes in nuclear architecture and mechanics in mesenchymal stem cells in response to dynamic stretch. / Trans. Orthop. Res. Soc. 60:180, 2014.
    43. Ho, CY, Lammerding, J (2012) Lamins at a glance. J. Cell Sci. 125: pp. 2087-2093
    44. Ifkovits, JL, Wu, K, Mauck, RL, Burdick, JA (2010) The influence of fibrous elastomer structure and porosity on matrix organization. PLoS ONE 5: pp. e15717
    45. Imler, SM, Doshi, AN, Levenston, ME (2004) Combined effects of growth factors and static mechanical compression on meniscus explant biosynthesis. Osteoarthritis Cartilage 12: pp. 736-744
    46. Ionescu, LC, Lee, GC, Garcia, GH, Zachry, TL, Shah, RP, Sennett, BJ (2011) Maturation state-dependent alterations in meniscus integration: implications for scaffold design and tissue engineering. Tissue Eng. Part A 17: pp. 193-204
    47. Ionescu, LC, Lee, GC, Sennett, BJ, Burdick, JA, Mauck, RL (2010) An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials 31: pp. 4113-4120
    48. Ionescu, LC, Mauck, RL (2013) Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng. Part A 19: pp. 538-547
    49. Kambic, HE, Futani, H, McDevitt, CA (2000) Cell, matrix changes and alpha-smooth muscle actin expression in repair of the canine meniscus. Wound Repair Regen. 8: pp. 554-561
    50. Khetan, S, Burdick, JA (2010) Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31: pp. 8228-8234
    51. Khetan, S, Guvendiren, M, Legant, WR, Cohen, DM, Chen, CS, Burdick, JA (2013) Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12: pp. 458-465
    52. Kim, I. L., M. B. Fisher, B. M. Baker, R. L. Mauck, and J. A. Burdick. Tunable fibrous hyaluronic acid scaffolds for cartilage tissue engineering. In: Transactions of the Society for Biomaterials Annual Meeting, 2014.
    53. Kim, IL, Khetan, S, Baker, BM, Chen, CS, Burdick, JA (2013) Fibrous hyaluronic acid hydrogels that direct MSC chondrogenesis through mechanical and adhesive cues. Biomaterials 34: pp. 5571-5580
    54. Kim, IL, Mauck, RL, Burdick, JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32: pp. 8771-8782
    55. Kolambkar, YM, Dupont, KM, Boerckel, JD, Huebsch, N, Mooney, DJ, Hutmacher, DW (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32: pp. 65-74
    56. Krause, M, Riet, J, Wolf, K (2013) Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy. Phys. Biol. 10: pp. 065002
    57. Krejci, J, Uhlirova, R, Galiova, G, Kozubek, S, Smigova, J, Bartova, E (2009) Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation. J. Cell. Physiol. 219: pp. 677-687
    58. Lammerding, J (2011) Mechanics of the nucleus. Compr. Physiol. 1: pp. 783-807
    59. Lammerding, J, Fong, LG, Ji, JY, Reue, K, Stewart, CL, Young, SG (2006) Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281: pp. 25768-25780
    60. Lammerding, J, Lee, RT (2005) The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found. Symp. 264: pp. 264-273
    61. Lammerding, J, Schulze, PC, Takahashi, T, Kozlov, S, Sullivan, T, Kamm, RD (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113: pp. 370-378
    62. Lange, JR, Fabry, B (2013) Cell and tissue mechanics in cell migration. Exp. Cell Res. 319: pp. 2418-2423
    63. Lee, CH, Cook, JL, Mendelson, A, Moioli, EK, Yao, H, Mao, JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376: pp. 440-448
    64. Li, WJ, Laurencin, CT, Caterson, EJ, Tuan, RS, Ko, FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res. 60: pp. 613-621
    65. Li, WJ, Mauck, RL, Cooper, JA, Yuan, X, Tuan, RS (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40: pp. 1686-1693
    66. Loeser, RF, Goldring, SR, Scanzello, CR, Goldring, MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64: pp. 1697-1707
    67. Lohmander, LS, Brandt, KD, Mazzuca, SA, Katz, BP, Larsson, S, Struglics, A (2005) Use of the plasma stromelysin (matrix metalloproteinase 3) concentration to predict joint space narrowing in knee osteoarthritis. Arthritis Rheum. 52: pp. 3160-3167
    68. Makris, EA, Hadidi, P, Athanasiou, KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32: pp. 7411-7431
    69. Martins, RP, Finan, JD, Guilak, F, Lee, DA (2012) Mechanical regulation of nuclear structure and function. Annu. Rev. Biomed. Eng. 14: pp. 431-455
    70. Masaeli, M, Tse, HTK, Gossett, DR, Gupta, D, Carlo, D (2013) Multi-parameter High-Throughput Mechanic Phenotyping. Freiburg, Germany
    71. Mauck, RL, Baker, BM, Nerurkar, NL, Burdick, JA, Li, WJ, Tuan, RS (2009) Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng. Part B Rev. 15: pp. 171-193
    72. McDevitt, CA, Webber, RJ (1990) The ultrastructure and biochemistry of meniscal cartilage. Clin. Orthop. Relat. Res. 252: pp. 8-18
    73. McNulty, A. L., J. B. Weinberg, and F. Guilak. Inhibition of matrix metalloproteinases enhances in vitro repair of the meniscus. / Clin. Orthop. Relat. Res. 467:1557鈥?567, 2008.
    74. McNulty, AL, Estes, BT, Wilusz, RE, Weinberg, JB, Guilak, F (2010) Dynamic loading enhances integrative meniscal repair in the presence of interleukin-1. Osteoarthritis Cartilage 18: pp. 830-838
    75. McNulty, AL, Guilak, F (2008) Integrative repair of the meniscus: lessons from in vitro studies. Biorheology 45: pp. 487-500
    76. McNulty, AL, Moutos, FT, Weinberg, JB, Guilak, F (2007) Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha. Arthritis Rheum. 56: pp. 3033-3042
    77. Meshorer, E, Yellajoshula, D, George, E, Scambler, PJ, Brown, DT, Misteli, T (2006) Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10: pp. 105-116
    78. Mesiha, M, Zurakowski, D, Soriano, J, Nielson, JH, Zarins, B, Murray, MM (2007) Pathologic characteristics of the torn human meniscus. Am. J. Sports Med. 35: pp. 103-112
    79. Metter, RB, Ifkovits, JL, Hou, K, Vincent, L, Hsu, B, Wang, L (2010) Biodegradable fibrous scaffolds with diverse properties by electrospinning candidates from a combinatorial macromer library. Acta Biomater. 6: pp. 1219-1226
    80. Moretti, M, Wendt, D, Schaefer, D, Jakob, M, Hunziker, EB, Heberer, M (2005) Structural characterization and reliable biomechanical assessment of integrative cartilage repair. J. Biomech. 38: pp. 1846-1854
    81. Namba, RS, Meuli, M, Sullivan, KM, Le, AX, Adzick, NS (1998) Spontaneous repair of superficial defects in articular cartilage in a fetal lamb model. J. Bone Joint Surg. Am. 80: pp. 4-10
    82. Nathan, AS, Baker, BM, Nerurkar, NL, Mauck, RL (2010) Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 7: pp. 57-66
    83. Natsu-Ume, T, Majima, T, Reno, C, Shrive, NG, Frank, CB, Hart, DA (2005) Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J. Orthop. Sci. 10: pp. 396-405
    84. Nerurkar, NL, Baker, BM, Sen, S, Wible, EE, Elliott, DM, Mauck, RL (2009) Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8: pp. 986-992
    85. Pajerowski, JD, Dahl, KN, Zhong, FL, Sammak, PJ, Discher, DE (2007) Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. USA 104: pp. 15619-15624
    86. Petersen, W, Tillmann, B (1998) Collagenous fibril texture of the human knee joint menisci. Anat. Embryol. (Berl). 197: pp. 317-324
    87. Petrosini, AV, Sherman, OH (1996) A historical perspective on meniscal repair. Clin. Sports Med. 15: pp. 445-453
    88. Peyton, SR, Putnam, AJ (2005) Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204: pp. 198-209
    89. Proctor, CS, Schmidt, MB, Whipple, RR, Kelly, MA, Mow, VC (1989) Material properties of the normal medial bovine meniscus. J. Orthop. Res. 7: pp. 771-782
    90. Provenzano, PP, Hayashi, K, Kunz, DN, Markel, MD, Vanderby, R (2002) Healing of subfailure ligament injury: comparison between immature and mature ligaments in a rat model. J. Orthop. Res. 20: pp. 975-983
    91. Purcell, B. P., D. Lobb, F. G. Spinale, and J. A. Burdick. On-demand delivery of TIMP-3 from injectable and MMP degradable hydrogels for infarct repair. In: Transaction of the 38th Annual Meeting: Pioneering the Future of Biomaterials, Vol. 38. Society for Biomaterials, p. 63, 2014.
    92. Purcell, BP, Elser, JA, Mu, A, Margulies, KB, Burdick, JA (2012) Synergistic effects of SDF-1alpha chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials 33: pp. 7849-7857
    93. Purcell, BP, Lobb, D, Charati, MB, Dorsey, SM, Wade, RJ, Zellars, KN (2014) Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13: pp. 653-661
    94. Purcell, BP, Lobb, D, Charati, MB, Dorsey, SM, Wade, RJ, Zellars, KH (2014) Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13: pp. 653-661
    95. Qu, F., M.B. Fisher, and R. L. Mauck. The basic science of meniscus repair: endogenous limitations and emerging regenerative strategies, Chap. 10. In: Meniscal Surgery: Management and Techniques, edited by J. D. Kelly. Springer Science聽+聽Business Media, LLC, 2014, pp. 89鈥?04.
    96. Qu, F, Lin, JM, Esterhai, JL, Fisher, MB, Mauck, RL (2013) Biomaterial-mediated delivery of degradative enzymes to improve meniscus integration and repair. Acta Biomater. 9: pp. 6393-6402
    97. Qu, F, Pintauro, MP, Haughan, JE, Henning, EA, Esterhai, JL, Schaer, TP (2015) Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface. Biomaterials 39: pp. 85-94
    98. Rath, E, Richmond, JC (2000) The menisci: basic science and advances in treatment. Br. J. Sports Med. 34: pp. 252-257
    99. Rowat, AC, Jaalouk, DE, Zwerger, M, Ung, WL, Eydelnant, IA, Olins, DE (2013) Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288: pp. 8610-8618
    100. Rowat, AC, Lammerding, J, Herrmann, H, Aebi, U (2008) Towards an integrated understanding of the structure and mechanics of the cell nucleus. BioEssays 30: pp. 226-236
    101. Scanzello, CR, Albert, AS, DiCarlo, E, Rajan, KB, Kanda, V, Asomugha, EU (2013) The influence of synovial inflammation and hyperplasia on symptomatic outcomes up to 2聽years post-operatively in patients undergoing partial meniscectomy. Osteoarthritis Cartilage 21: pp. 1392-1399
    102. Scanzello, CR, Goldring, SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51: pp. 249-257
    103. Scanzello, CR, McKeon, B, Swaim, BH, DiCarlo, E, Asomugha, EU, Kanda, V (2011) Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms. Arthritis Rheum. 63: pp. 391-400
    104. Schmidt, S, Friedl, P (2010) Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 339: pp. 83-92
    105. Shen, W, Chen, J, Zhu, T, Chen, L, Zhang, W, Fang, Z (2014) Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing. Stem Cells Transl. Med. 3: pp. 387-394
    106. Shrive, NG, O鈥機onnor, JJ, Goodfellow, JW (1978) Load-bearing in the knee joint. Clin. Orthop. 131: pp. 279-287
    107. Sihvonen, R, Paavola, M, Malmivaara, A, Itala, A, Joukainen, A, Nurmi, H (2013) Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N. Engl. J. Med. 369: pp. 2515-2524
    108. Spivakov, M, Fisher, AG (2007) Epigenetic signatures of stem-cell identity. Nat. Rev. Genet. 8: pp. 263-271
    109. Struglics, A, Hansson, M, Lohmander, LS (2011) Human aggrecanase generated synovial fluid fragment levels are elevated directly after knee injuries due to proteolysis both in the inter globular and chondroitin sulfate domains. Osteoarthritis Cartilage 19: pp. 1047-1057
    110. Struglics, A, Larsson, S, Pratta, MA, Kumar, S, Lark, MW, Lohmander, LS (2006) Human osteoarthritis synovial fluid and joint cartilage contain both aggrecanase- and matrix metalloproteinase-generated aggrecan fragments. Osteoarthritis Cartilage 14: pp. 101-113
    111. Swift, J, Ivanovska, IL, Buxboim, A, Harada, T, Dingal, PC, Pinter, J (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341: pp. 1240104
    112. Talwar, S, Kumar, A, Rao, M, Menon, GI, Shivashankar, GV (2013) Correlated spatio-temporal fluctuations in chromatin compaction states characterize stem cells. Biophys. J . 104: pp. 553-564
    113. Tchetverikov, I, Lohmander, LS, Verzijl, N, Huizinga, TW, TeKoppele, JM, Hanemaaijer, R (2005) MMP protein and activity levels in synovial fluid from patients with joint injury, inflammatory arthritis, and osteoarthritis. Ann. Rheum. Dis. 64: pp. 694-698
    114. Tenuta, JJ, Arciero, RA (1994) Arthroscopic evaluation of meniscal repairs. Factors that effect healing. Am. J. Sports Med. 22: pp. 797-802
    115. Upton, ML, Chen, J, Guilak, F, Setton, LA (2003) Differential effects of static and dynamic compression on meniscal cell gene expression. J. Orthop. Res. 21: pp. 963-969
    116. Upton, ML, Hennerbichler, A, Fermor, B, Guilak, F, Weinberg, JB, Setton, LA (2006) Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect. Tissue Res. 47: pp. 207-214
    117. Breevaart Bravenboer, J, In der Maur, CD, Bos, PK, Feenstra, L, Verhaar, JA, Weinans, H (2004) Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res. Ther. 6: pp. R469-R476
    118. Vanderhave, KL, Moravek, JE, Sekiya, JK, Wojtys, EM (2011) Meniscus tears in the young athlete: results of arthroscopic repair. J. Pediatr. Orthop. 31: pp. 496-500
    119. Wade, RJ, Burdick, JA (2012) Engineering ECM signals into biomaterials. Mater. Today 15: pp. 454-459
    120. Wojakowski, W, Tendera, M, Michalowska, A, Majka, M, Kucia, M, Maslankiewicz, K (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110: pp. 3213-3220
    121. Wolf, K, Friedl, P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol. 21: pp. 736-744
    122. Wolf, K, Lindert, M, Krause, M, Alexander, S, Riet, J, Willis, AL (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201: pp. 1069-1084
    123. Zaman, MH, Trapani, LM, Sieminski, AL, Mackellar, D, Gong, H, Kamm, RD (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl. Acad. Sci. USA 103: pp. 10889-10894
    124. Zwerger, M, Jaalouk, DE, Lombardi, ML, Isermann, P, Mauermann, M, Dialynas, G (2013) Myopathic lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum. Mol. Genet. 22: pp. 2335-2349
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Biomedicine
    Biomedical Engineering
    Biophysics and Biomedical Physics
    Mechanics
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-9686
文摘
When the field of tissue engineering first arose, scaffolds were conceived of as inert three-dimensional structures whose primary function was to support cellularity and tissue growth. Since then, advances in scaffold and biomaterial design have evolved to not only guide tissue formation, but also to interact dynamically with and manipulate the wound environment. At present, these efforts are being directed towards strategies that directly address limitations in endogenous wound repair, with the goal of reprogramming the local wound environment (and the cells within that locality) from a state that culminates in an inferior tissue repair into a state in which functional regeneration is achieved. This review will address this approach with a focus on recent advances in scaffold design towards the resolution of tears of the knee meniscus as a case example. The inherent limitations to endogenous repair will be discussed, as will specific examples of how biomaterials are being designed to overcome these limitations. Examples will include design of fibrous scaffolds that promote colonization by modulating local extracellular matrix density and delivering recruitment factors. Furthermore, we will discuss scaffolds that are themselves modulated by the wound environment to alter porosity and modulate therapeutic release through precise coordination of scaffold degradation. Finally, we will close with emerging concepts in local control of cell mechanics to improve interstitial cell migration and so advance repair. Overall, these examples will illustrate how emergent features within a biomaterial can be tuned to manipulate and harness the local tissue microenvironment in order to promote robust regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700