Physiologic roles of soluble pyridine nucleotide transhydrogenase inEscherichia coli as determined by homologous recombination
详细信息    查看全文
  • 作者:Hanjun Zhao (1) (2)
    Peng Wang (1) (2)
    Enqi Huang (1) (2)
    Yadong Ge (1) (2)
    Guoping Zhu (1) (2)
  • 关键词:soluble transhydrogenase ; homologous recombination ; growth rate ; isocitrate dehydrogenase ; NADH dehydrogenase II ; real ; time PCR
  • 刊名:Annals of Microbiology
  • 出版年:2008
  • 出版时间:June 2008
  • 年:2008
  • 卷:58
  • 期:2
  • 页码:275-280
  • 全文大小:166KB
  • 参考文献:1. Boonstra B., French C.E., Wainwright I., Bruce N.C. (1999). The / udhA gene of / Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J. Bacteriol., 181: 1030-034.
    2. Boonstra B., Rathbone D.A., French C.E., Walker E.D., Bruce N.C. (2000). Cofactor regeneration by a soluble pyridine nucleotide transh ydrogenase for biological production of h ydromorphone. Appl. Environ. Microbiol., 66: 5161-166. CrossRef
    3. Calhoun M.W., Gennis R.B. (1993). Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in / Escherichia coli. J. Bacteriol., 175: 3013-019.
    4. Chen R., Greer A., Dean A.M. (1995). A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Proc. Natl. Acad. Sci. USA, 92: 11666-1670. CrossRef
    5. Datsenko K.A., Wanner B.L. (2000). One-step inactivation of chromosomal genes in / Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA, 97: 6640-645. CrossRef
    6. Dean A.M., Golding G.B. (1997). Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Proc. Natl. Acad. Sci. USA, 94: 3104-109. CrossRef
    7. Golding G.B., Dean A.M. (1998). The structural basis of molecular adaptation. Mol. Biol. Evol., 15: 355-69.
    8. Gyan S., Shiohira Y., Sato I., Takeuchi M., Sato T. (2006). Regulatory loop between redox sensing of the NADH/NAD+ ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in / Bacillus subtilis. J. Bacteriol., 188: 7062-071. CrossRef
    9. Ichinose H., Kamiya N., Goto M. (2005). Enzymatic redox cofactor regeneration in organic media: functionalization and application of glycerol dehydrogenase and soluble transhydrogenase in reverse micelles. Biotechnol. Prog., 21: 1192-197. CrossRef
    10. Jaworowski A., Campbell H.D., Poulis M.I., Young I.G. (1981). Genetic identification and purification of the respiratory NADH dehydrogenase of / Escherichia coli. Biochemistry, 20: 2041-047. CrossRef
    11. Johnson J.L., Brooker R.J. (1999). A K319N/E325Q double mutant of the lactose permease cotransports H1 with lactose. J. Biol. Chem., 274: 4074-081. CrossRef
    12. Matsushita K., Ohnishi T., Kaback H.R. (1987). NADH-ubiquinone oxidoreductases of the / Escherichia coli aerobic respiratory. Biochemistry, 26: 7732-737. CrossRef
    13. Miller J.H. (1992). A short course in bacterial genetics: a laboratory manual and handbook for / Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, New York.
    14. Miller S.P., Chen R., Karshchnia E.J., Romfo C., Dean A.M., LaPorte D.C. (2000). Locations of the regulatory sites for isocitrate dehydrogenase kinase/phosphatase. J. Biol. Chem., 275: 833-39. CrossRef
    15. Neidhardt F.C., Block P.L., Smith D.F. (1974). Culture medium for enterobacteria. J. Bacteriol., 119: 736-47.
    16. Pfaffl M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29: NO. 900. CrossRef
    17. Rapisarda V.A., Chehin R.N., De Las Rivas J., Rodriguez-Montelongo L., Farias R.N., Massa E.M. (2002). Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the / Escherichia coli NADH dehydrogenase-2. Arch. Biochem. Biophys., 405: 87-4. CrossRef
    18. Rodriguez-Montelongo L., Volentini S.I., Farias R.N., Massa E.M., Rapisarda V.A. (2006). The Cu(II)-reductase NADH dehydrogenase-2 of / Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch. Biochem. Biophys., 451: 1-. CrossRef
    19. Sauer U., Canonaco F., Heri S., Perrenoud A., Fischer E. (2004). The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of / Escherichia coli. J. Biol. Chem., 279: 6613-619. CrossRef
    20. Singh S.K., Miller S.P., Dean A.M., Banaszak L.J., LaPorte D.C. (2002). / Bacillus subtilis isocitrate dehydrogenase. J. Biol. Chem., 277 (9): 7567-573. CrossRef
    21. Spencer C.C., Bertrand M., Travisano M., Doebeli M. (2007). Adaptive diversification in genes that regulate resource use in / Escherichia coli. PLoS Genetics, 3 (1): e15. CrossRef
    22. Stueland C.S., Gorden K., LaPorte D.C. (1988). The isocitrate dehydrogenase phosphorylation cycle. J. Biol. Chem., 263: 19475-9479.
    23. Voordouw G., van der Vies S.M., Themmen A.P.N. (1983). Why are two different types of pyridine nucleotide transhydrogenase found in living organisms? Eur. J. Biochem., 131: 527-33. CrossRef
    24. Zhu G.P., Golding G.B., Dean A.M. (2005). The selective cause of an ancient adaptation. Science, 307: 1279-282. CrossRef
  • 作者单位:Hanjun Zhao (1) (2)
    Peng Wang (1) (2)
    Enqi Huang (1) (2)
    Yadong Ge (1) (2)
    Guoping Zhu (1) (2)

    1. The Key Laboratory of Molecular Evolution, Anhui Normal University, 1 Beijing Road, 241000, Wuhu, Anhui, P.R. China
    2. Institute of Molecular Biology and Biotechnology, Anhui Normal University, 1 Beijing Road, 241000, Wuhu, Anhui, P.R. China
  • ISSN:1869-2044
文摘
The soluble transhydrogenase is an energy-independent flavoprotein and important in cofactor regenerating system. In order to understand its physiologic roles, the recombinant strain with the deletion of soluble transhydrogenase gene (ΔudhA) inEscherichia coli was constructed using homologous recombination. Then the different genetic back-grounds containing eithericd NADP oricd NAD, which encodes NADP-dependent isocitrate dehydrogenase (IDH) or engineered NAD-dependent IDH, were transduced into ΔudhA, creating two strains (icd NADP/ΔudhA, icd NAD/ΔudhA). During growth on acetate,icd NADP/ΔudhA grew poorly and its growth rate was remarkably reduced by 75% as compared with the wild type. However,icd NAD/ΔudhA showed significantly better growth thanicd NADP/ΔudhA. Its growth rate was about 3.7 fold oficd NADP/ΔudhA, which was equivalent to the wild type. These results indicated that UdhA is an essential NADH resource for acetate-grownE. coli and is a dominant factor for bacteria to adapt to the stress environment. Furthermore, when UdhA was absence,icd NAD/ΔudhA displayed about 1.5 fold increase in the IDH activity after switching the carbon source from glucose to acetate. And RT-PCR showed that the expression of NADH dehydrogenase II (NDH-2) inicd NAD/ΔudhA was remarkably up-regulated by about 2.8 fold as compared withicd NADP/ΔudhA. The increase of IDH activity and NDH-2 expression can be explained by the reducing excess NADPH production and restoring higher levels of NADH generation in cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700