Oak Decline as Illustrated Through Plant–Climate Interactions Near the Northern Edge of Species Range
详细信息    查看全文
  • 作者:Samuli Helama ; Kristina Sohar ; Alar Läänelaid ; Hanna M. Mäkelä…
  • 关键词:Climate change ; Climate impacts ; Drought ; Drought stress ; Mortality ; Plant–climate interactions ; Tree death
  • 刊名:The Botanical Review
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:82
  • 期:1
  • 页码:1-23
  • 全文大小:1,126 KB
  • 参考文献:Ahti, T., L. Hämet-Ahti & J. Jalas. 1968. Vegetation zones and their sections in northwestern Europe. Annales Botanici Fennici 3: 169–211.
    Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, E. H. Hogg, P. Gonzalez, R. Fensham, Z. Zhangm, J. Castro, N. Demidova, J. H. Lim, G. Allard, S. W. Running, A. Semerci & N. Cobb. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259: 660–684.CrossRef
    Anderegg, W. R., J. A. Berry, D. D. Smith, J. S. Sperry, L. D. Anderegg & C. B. Field. 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences 109: 233–237.CrossRef
    Andersson, M., P. Milberg & K.-O. Bergman. 2011. Low pre-death growth rates of oak (Quercus robur L.) - Is oak death a long-term process induced by dry years? Annals of Forest Science 68: 159–168.CrossRef
    Aniol, R. W. 1983. Tree-ring analysis using CATRAS. Dendrochronologia 1: 45–53.
    Axelrod, D. I. 1983. Biogeography of oaks in the arcto-tertiary province. Annals of the Missouri Botanical Garden 70: 629–657.CrossRef
    Barklund, P. & K. Wahlström. 1998. Death of oaks in Sweden since 1987. Pp 193. In: T. L. Cech, G. Hartmann, & C. Tomiczek (eds). Disease/environment interactions in forest decline. Federal Forest Research Center, Vienna.
    Barsoum, N., E. L. Eaton, T. Levanič, J. Pargade, X. Bonnart & J. I. L. Morison. 2015. Climatic drivers of oak growth over the past one hundred years in mixed and monoculture stands in southern England and northern France. European Journal of Forest Research 134: 33–51.CrossRef
    Bednarz, Z. & J. Ptak. 1990. The influence of temperature and precipitation on ring widths of oak (Quercus robur L.) in the Niepolomice forest near Cracow, Southern Poland. Tree-Ring Bulletin 50: 1–10.
    Bigler, C., O. U. Bräker, H. Bugmann, M. Dobbertin & A. Rigling. 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9: 330–343.CrossRef
    Breshears, D. D., N. S. Cobb, P. M. Rich, K. P. Price, C. D. Allen, R. G. Balice, W. H. Romme, J. H. Kastens, M. L. Floyd, J. Belnap, J. J. Anderson, O. B. Myers & C. W. Clifton. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences 102: 15144–15148.CrossRef
    Briffa, K. & P. D. Jones. 1990. Basic chronology statistics and assessment. Pp 137–152. In: E. R. Cook & L. A. Kairiukstis (eds). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.
    Camarero, J. J., A. Gazol, G. Sangüesa-Barreda, J. Oliva & S. M. Vicente-Serrano. 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. Journal of Ecology 103: 44–57.CrossRef
    Carnicer, J., M. Coll, M. Ninyerola, X. Pons, G. Sánchez & J. Peñuelas. 2011. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences 108: 1474–1478.CrossRef
    Ciais, P., M. Reichstein, N. Viovy, A. Granier, J. Ogée, V. Allard, M. Aubinet, N. Buchmann, C. Bernhofer, A. Carrara, F. Chevallier, N. De Noblet, A. D. Friend, P. Friedlingstein, T. Grünwald, B. Heinesch, P. Keronen, A. Knohl, G. Krinner, D. Loustau, G. Manca, G. Matteucci, F. Miglietta, J. M. Ourcival, D. Papale, K. Pilegaard, S. Rambal, G. Seufert, J. F. Soussana, M. J. Sanz, E. D. Schulze, T. Vesala & R. Valentini. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533.CrossRef PubMed
    Cook, E. R. & K. Peters. 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin 41: 45–53.
    ———, & S. M. Zedaker. 1992. The dendroecology of red spruce decline. Ecological Studies 96:192–231.
    ———, K. Briffa, S. Shiyatov & V. Mazepa. 1990a. Tree-Ring Standardization and Growth-Trend Estimation. Pp 104–123. In: E. R. Cook & L. A. Kairiukstis (eds). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.CrossRef
    ———, S. Shiyatov & V. Mazepa. 1990b. Estimation of the mean chronology. Pp 123–132. In: E. R. Cook & L. A. Kairiukstis (eds). Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Dordrecht.CrossRef
    Dakos, V., S. R. Carpenter, W. A. Brock, A. M. Ellison, V. Guttal, A. R. Ives, S. Kéfi, V. Livina, D. A. Seekell, E. H. van Nes & M. Scheffer. 2012a. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE 7: e41010.CrossRef PubMed PubMedCentral
    ———, E. H. Van Nes, P. D’Odorico & M. Scheffer. 2012b. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93: 264–271.CrossRef PubMed
    Dobbertin, M. 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: A review. European Journal of Forest Research 124: 319–333.CrossRef
    Drobyshev, I., H. Linderson & K. Sonesson. 2007. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24: 97–108.CrossRef
    ———, ———, ———, M. Niklasson, O. Eggertsson, H. Linderson & K. Sonesson. 2008. Influence of annual weather on growth of pedunculate oak in southern Sweden. Annals of Forest Science 65: 1–14.CrossRef
    Ducousso, A. & S. Bordacs. 2004. EUFORGEN Technical Guidelines for genetic conservation and use for pedunculate and sessile oaks (Quercus robur and Q. petraea). International Plant Genetic Resources Institute, Rome, Italy.
    Ferris, C., R. A. King, R. Väinölä & G. M. Hewitt. 1998. Chloroplast DNA recognizes three refugial sources of European oaks and suggests independent eastern and western immigrations to Finland. Heredity 80: 584–593.CrossRef PubMed
    Fink, A. H., T. Bruecher, A. Krueger, G. C. Leckebusch, J. G. Pinto & U. Ulbrich. 2004. The 2003 European summer heatwaves and drought — synoptic diagnosis and impacts. Weather 59: 209–216.CrossRef
    Führer, E. 1998. Oak decline in central Europe: a Synopsis of Hypotheses. Pp. 7–24 In: M. L. McManus & A. M. Liebhold AM (eds.), Proceedings: population dynamics, impacts, and integrated management of forest defoliating insects. U.S. Department of Agriculture, Forest Service, Northeastern Research Station. Gen. Technical Report, NE-247, Radnor, PA.
    Fritts, H. C. 1976. Tree rings and climate. Academic, London, UK.
    Gibbs, J. N. & B. J. W. Greig. 1997. Biotic and abiotic factors affecting the dying back of pedunculate oak Quercus robur L. Forestry 70: 399–406.CrossRef
    Hartmann, G. & R. Blank. 1992. Winterfrost, Kahlfraß und Prachtkäferbefall als Faktoren im Ursachenkomplex des Eichensterbens in Norddeutschland. Summary in English: winter frost, insect defoliation and Agrilus biguttatus Fabr. as causal factors of oak decline in northern Germany. Forst und Holz 47: 443–452.
    ———, ——— & S. Lewark. 1989. Eichensterben in Norddeutschland – Verbreitung, Schadbilder, mögliche Ursachen. Summary in English: oak decline in Northern Germany. Distribution, symptoms, probable causes. Forst und Holz 44: 475–487.
    Hicke, J. A. & M. J. B. Zeppel. 2013. Climate-driven tree mortality: insights from the piñon pine die-off in the United States. New Phytologist 200: 301–303.CrossRef PubMed
    Hilasvuori, E. & F. Berninger. 2010. Dependence of tree ring stable isotope abundances and ring width on climate in Finnish oak. Tree Physiology 30: 636–647.CrossRef PubMed
    Helama, S., A. Läänelaid, J. Raisio, H. M. Mäkelä, E. Hilasvuori, H. Jungner & E. Sonninen. 2014. Oak decline analyzed using intraannual radial growth indices, δ13C series and climate data from a rural hemiboreal landscape in southwesternmost Finland. Environmental Monitoring and Assessment 186: 4697–4708.CrossRef PubMed
    ———, ———, ——— & H. Tuomenvirta. 2009. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant and Soil 319: 163–174.CrossRef
    ———, ———, ——— & ———. 2012. Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees 26: 353–362.CrossRef
    ———, B. W. Arentoft, O. Collin-Haubensak, M. D. Hyslop, C. K. Brandstrup, H. M. Mäkelä, Q. H. Tian & R. Wilson. 2013a. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland. Ecological Research 28: 1019–1028.CrossRef
    ———, K. Mielikäinen, M. Timonen, H. Herva, H. Tuomenvirta & A. Veläinen. 2013b. Regional climatic signals in Scots pine growth with insights into snow and soil associations. Dendrobiology 70: 27–34.CrossRef
    ———, H. Tuomenvirta & A. Veläinen. 2011. Boreal and subarctic soils under climatic change. Global and Planetary Change 79: 37–47.CrossRef
    Holmes, R. L. 1983. Computer-assisted quality control in treering dating and measurement. Tree Ring Bulletin 43: 69–75.
    Holopainen, M., O. Leino, H. Kämäri & M. Talvitie. 2006. Drought damage in the park forests of the city of Helsinki. Urban Forestry & Urban Greening 4: 75–83.CrossRef
    Kirdyanov, A., M. Hughes, E. Vaganov, F. Schweingruber & P. Silkin. 2003. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17: 61–69.CrossRef
    Kuehne, C., E. Kublin, P. Pyttel & J. Bauhus. 2013. Growth and form of Quercus robur and Fraxinus excelsior respond distinctly different to initial growing space: results from 24-year-old Nelder experiments. Journal of Forestry Research 24: 1–14.CrossRef
    Jönsson, U., T. Jung, K. Sonesson & U. Rosengren. 2005. Relationships between health of Quercus robur, occurrence of Phytophthora species and site conditions in southern Sweden. Plant Pathology 54: 502–511.
    Linderholm, H. W., A. Waltherm & D. Chen. 2008. Twentieth century trends in the thermal growing season in the Greater Baltic Area. Climatic Change 87: 405–419.CrossRef
    Manion, P. D. 1991. Tree disease concepts, ed. 2nd. Prentice Hall, Inc, Englewood Cliffs.
    ——— & D. Lachance. 1992. Forest decline concepts: an overview. Pp 181–190. In: P. D. Manion & D. Lachance (eds). Forest decline concepts. The American Phytopathological Society, St. Paul, MN.
    Niinemets, Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260: 1623–1639.CrossRef
    Pedersen, B. S. 1998. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79: 79–93.CrossRef
    Pilcher, J. R. & B. Gray. 1982. The relationships between oak tree growth and climate in Britain. Journal of Ecology 70: 297–304.CrossRef
    Rainio, R. J. 1977. On the distribution of oak (Quercus robur) in the southwestern-most parts of Finland. Silvae Fennica 11: 127–135.CrossRef
    Raisio, J. 1996. Jalojen lehtipuiden luontaiset esiintymät - menneisyyden jäänteitä vai huomisen puita? Metsäntutkimuslaitoksen tiedonantoja 605: 53–66.
    Reyer, C. O. P., A. Ramming, N. Brouwers & F. Langerwisch. 2015. Forest resilience, tipping points and global change processes. Journal of Ecology 103: 1–4.CrossRef
    Robertson, I., J. Rolfe, V. R. Switsur, A. H. C. Carter, M. A. Hall, A. C. Barker & J. S. Waterhouse. 1997. Signal strength and climate relationships in 13C/12C ratios of tree ring cellulose from oak in southwest Finland. Geophysical Research Letters 24: 1487–1490.CrossRef
    Rozas, V. 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: Tree-ring growth responses to climate. Annals of Science 62: 209–218.CrossRef
    ——— & I. García-González. 2012. Too wet for oaks? Inter-tree competition and recent persistent wetness predispose oaks to rainfall-induced dieback in Atlantic rainy forest. Global and Planetary Change 94–95: 62–71.CrossRef
    Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke & B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.CrossRef PubMed
    Sevanto, S., N. G. McDowell, L. T. Dickman, R. Pangle & W. T. Pockman. 2014. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell and Environment 37: 153–161.CrossRef PubMed PubMedCentral
    Silander, J. & E. A. Järvinen. 2004. Effects of severe drought of 2002/2003. The Finnish Environment 731: 1–79.
    Siwecki, R. & K. Ufnalski. 1998. Review of oak stand decline with special reference to the role of drought in Poland. European Journal of Forest Pathology 28: 99–112.
    Sohar, K., S. Helama, A. Läänelaid, J. Raisio & H. Tuomenvirta. 2014a. Oak decline in a southern Finnish forest as affected by a drought sequence. Geochronometria 41: 92–103.CrossRef
    ———, A. Läänelaid, D. Eckstein, S. Helama & J. Jaagus. 2014b. Dendroclimatic signals of pedunculate oak (Quercus robur L.) in Estonia. European Journal of Forest Research 133: 535–549.
    Sonesson, K. 1999. Oak decline in southern Sweden. Scandinavian Journal of Forest Research 14: 368–375.CrossRef
    Steinkamp, J. & T. Hickler. 2015. Is drought-induced forest dieback globally increasing? Journal of Ecology 103: 44–57.CrossRef
    Tainter, F. H., S. W. Fraedrich & D. M. Benson. 1984. The effect of climate on growth, decline, and death of northern red oaks in the Western North Carolina Nantahala Mountains. Castanea 49: 127–137.
    ———, ———, ———, W. A. Retzlaff, D. A. Starkey & S. W. Oak. 1990. Decline of radial growth in red oaks is associated with short-term changes in climate. European Journal of Forest Pathology 20: 95–105.CrossRef
    Tessier, L., P. Nola & F. Serre-Bachet. 1994. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytologist 126: 355–367.CrossRef
    Thomas, F. M. & G. Hartmann. 1998. Tree rooting patterns and soil water relations of healthy and damaged stands of mature oak (Quercus robur L. and Quercus petraea [Matt.] Liebl.). Plant and Soil 203: 145–158.
    Thomas, F. M., R. Blank & G. Hartmann. 2002. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathology 32: 277–307.CrossRef
    Tietäväinen, H., H. Tuomenvirta & A. Veläinen. 2010. Annual and seasonal mean temperatures in Finland during the last 160 years based on gridded temperature data. International Journal of Climatology 30: 2247–2256.CrossRef
    Vaganov, E. A., M. K. Hughes, A. V. Kirdyanov, F. H. Schweingruber & P. P. Silkin. 1999. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400: 149–151.CrossRef
    Valkonen, S. 2008. Survival and growth of planted and seeded oak (Quercus robur L.) seedlings with and without shelters on field afforestation sites in Finland. Forest Ecology and Management 255: 1085–1094.CrossRef
    Wigley, T. M. L., K. R. Briffa & P. D. Jones. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.CrossRef
    Wolkovich, E. M., B. I. Cook, K. K. McLauchlan & T. J. Davies. 2014. Temporal ecology in the Anthropocene. Ecology Letters 17: 1365–1379.CrossRef PubMed
    Young, C. W. T. 1965. Death of Pedunculate oak and variations in annual radial increments related to climate. Forest record, Forestry commission 55: 1–15.
    Zeppel, M. J. B., W. R. L. Anderegg & H. D. Adams. 2013. Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytologist 197: 372–374.CrossRef PubMed
    Zimmermann, J., M. Hauck, C. Dulamsurem & C. Leuschnew. 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18: 560–572.CrossRef
  • 作者单位:Samuli Helama (1)
    Kristina Sohar (2) (3)
    Alar Läänelaid (3)
    Hanna M. Mäkelä (4)
    Juha Raisio (5)

    1. Natural Resources Institute Finland, Eteläranta 55, 96301, Rovaniemi, Finland
    2. Institute of Botany, Czech Academy of Sciences, Dukelská 135, 37982, Třeboň, Czech Republic
    3. Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
    4. Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
    5. The Public Works Department, Street and Park Division, P.O. Box 1515, 00099, City of Helsinki, Finland
  • 刊物主题:Plant Sciences; Plant Systematics/Taxonomy/Biogeography; Plant Anatomy/Development; Plant Physiology; Plant Ecology;
  • 出版者:Springer US
  • ISSN:1874-9372
文摘
This paper investigates historical growth and climate records among the oak sites representing the northern edge of species range in northernmost Europe (Finland). This is to characterize plant–climate interactions for a multitude of sites where oak decline has recently been observed and understand this most recent decline in the context of the past decline studies elsewhere. Further, our paper demonstrates the procedures the tree-ring data can be used in isolating those factors significantly contributing to decline. Our findings point towards complex tree mortality dynamics. Compared to oaks that remain healthy, the declining and dead oaks represent the trees clearly having suffered from competition and edaphic position within their site. This was indicated by their reduced growth rates and more drastic growth disturbance, with indications of reduced resilience. Growth of these trees was also deteriorated by cold soil temperatures during the dormancy in addition to summer droughts. By contrast, the growth of healthy oaks has been notably ameliorated by springtime soil warming over the past decades. The results demonstrate the climatic determinants for observed decline in the northern oak sites, which may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, although their habitats are not normally considered water-limited.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700