Cross-sectional analysis of W-cored Ni nanoparticle via focused ion beam milling with impregnation
详细信息    查看全文
  • 作者:Saeeun Jeong (25)
    Hyunwoong Na (26)
    Gwangyeob Lee (25)
    Seong Ho Son (25)
    Hanshin Choi (25)

    25. Incheon Regional Division
    ; Korea Institute of Industrial Technology ; Incheon ; 406-840 ; Republic of Korea
    26. Department of Materials Science and Engineering
    ; Yonsei University ; Seoul ; 120-749 ; Republic of Korea
  • 关键词:W ; Ni bimetallic nanoparticle ; RF thermal plasma ; Nonequilibrium phase ; Nanoparticle cross section ; TEM
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,259 KB
  • 参考文献:1. Davis, SC, Klabunde, KJ (1982) Unsupported small metal particles: preparation, reactivity, and characterization. Chem Rev 82: pp. 153-208 CrossRef
    2. Tseng, WJ, Lin, SY (2003) Effect of polymeric surfactant on flow behaviors of nickel-ethanol-isopropanol suspensions. Mater Sci Eng A362: pp. 160-166 CrossRef
    3. Degen, A, Macek, J (1999) Preparation of submicrometer nickel powders by the reduction from nonaqueous media. Nanostruc Mater 12: pp. 225-228 CrossRef
    4. Pollet, M, Marinel, S, Desgardin, G (2004) CaZrO3, a Ni-co-sinterable dielectric material for base metal-multilayer ceramic capacitor applications. J Eur Ceram Soc 24: pp. 119-127 CrossRef
    5. Shizuno, H, Kusumi, S, Saito, H, Kishi, H (1993) Properties of Y5V multilayer ceramic capacitor with nickel electrodes. Jpn J Appl Phys 32: pp. 4380-4383 CrossRef
    6. Chen, R, Wang, X, Wen, H, Li, L, Gui, Z (2004) Enhancement of dielectric properties by additions of Ni nano-particles to a X7R-type barium titanate ceramic matrix. Ceram Int 30: pp. 1271-1274 CrossRef
    7. Kishi, H, Mizuno, Y, Chazono, H (2003) Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn J Appl Phys 42: pp. 1-15 CrossRef
    8. Chowdary, KR, Subbarao, EC (1981) Liquid phase sintered BaTiO3. Ferroelectrics 37: pp. 689-692 CrossRef
    9. Chiang, C-S, Lee, Y-C, Shiao, F-T, Lee, W-H, Hennings, D (2012) Effect of TiO2 doped Ni electrodes on the dielectric properties and microstructures of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 multilayer ceramic capacitors. J Eur Ceram Soc 32: pp. 865-873 CrossRef
    10. Yang, GY, Lee, SI, Liu, ZJ, Anthony, CJ, Dickey, EC, Liu, ZK, Randall, CA (2006) Effect of local oxygen activity on Ni鈥揃aTiO3 interfacial reactions. Acta Mater 54: pp. 3513-3523 CrossRef
    11. Hosokawa, M, Nogi, K, Naito, M, Yokoyama, T (2007) Nanoparticle Technology Handbook. Elsevier, Amsterdam
    12. Iijima, S (1991) Helical microtubules of graphitic carbon. Nature 354: pp. 56-58 CrossRef
    13. Sano, N, Akazawa, H, Kikuchi, T, Kanki, T (2003) Separated synthesis of iron-included carbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen. Carbon 41: pp. 2159-2179 CrossRef
    14. Bartsch, K, Leonhardt, A (2004) An approach to the structural diversity of aligned grown multiwalled carbon nanotubes on catalyst layer. Carbon 42: pp. 1731-1736 CrossRef
    15. McCormick, PG (1995) Application of mechanical alloying to chemical refining. Mater Trans JIM 36: pp. 161-169 CrossRef
    16. Yeshchenko, OA, Dmitruk, IM, Alexeenko, AA, Dmytruk, AM (2007) Size-dependent melting of spherical copper nanoparticles embedded in a silica matrix. Phys Rev B 75: pp. 085434 CrossRef
    17. Lobato, I, Rojas, J, Landauro, CV, Torres, J (2009) Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions. J Phys Condens Matter 21: pp. 055301 CrossRef
    18. Soul茅 de Bas, B, Ford, MJ, Cortie, MB (2006) Melting in small gold clusters: a density functional molecular dynamics study. J Phys Condens Matter 18: pp. 55 CrossRef
    19. Alonso, JA (2005) Structure and Properties of Atomic Nanoclusters. Imperial College, London CrossRef
    20. Krivanek, OL, Chisholm, MF, Nicolosi, V, Pennycook, TJ, Corbin, GJ, Dellby, N, Murfitt, MF, Own, CS, Szilagyi, ZS, Oxley, MP, Pantelides, ST, Pennycook, SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464: pp. 571-574 CrossRef
    21. Wang, RM, Dmitrieva, O, Farle, M, Dumpich, G, Ye, HQ, Poppa, H, Kilaas, R, Kisielowski, C (2008) Layer resolved structural relaxation at the surface of magnetic FePt icosahedral nanoparticles. Phys Rev Lett 100: pp. 017205 CrossRef
    Wagner, LC eds. (1999) Sectioning Techniques for TEM Imaging: Failure Analysis of Integrated Circuits. Tools and Techniques. Kluwer Academic, Dordrecht
    22. Pratsinis, SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24: pp. 197-219 CrossRef
    23. Bouillard, J, Vignes, A, Dufaud, O, Perrin, L, Thomas, D (2010) Ignition and explosion risks of nanopowders. J Hazard Mater 181: pp. 873-880 CrossRef
    24. Wegner, K, Walker, B, Tsavros, S, Pratsinis, SE (2002) Design of metal nanoparticle synthesis by vapor flow condensation. Chem Eng Sci 57: pp. 1753-1762 CrossRef
    25. Birringer, R, Gleiter, H, Klein, HP, Marquardt, P (1984) Nanocrystalline materials - an approach to a novel solid structure with gas-like disorder?. Phys Lett 102A: pp. 365-369 CrossRef
    26. Wahok, K, Hihata, T, Peng, DL, Sumiyama, K (1999) Compositional partition in Ag鈥揘b alloy clusters produced by a plasma-gas-condensation cluster source. Nanostruct Mater 11: pp. 1245-1251 CrossRef
    27. Flagan, RC, Lunden, MM (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater Sci Eng A204: pp. 113-124 CrossRef
    28. Granqvist, CG, Buhrman, RA (1976) Ultrafine metal particles. J Appl Phys 47: pp. 2200-2219 CrossRef
    29. Vollath, D (2008) Plasma synthesis of nanopowders. J Nanoparticle Res 10: pp. 39-57 CrossRef
    30. Aning, AO, Wang, Z, Courtney, TH (1993) Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys. Acta Mater 41: pp. 165-174 CrossRef
    31. Zhang, ZW, Zhou, JE, Xi, SQ, Ran, G, Li, PL, Zhang, WX (2004) Formation of crystalline and amorphous solid solutions of W鈥揘i鈥揊e powder during mechanical alloying. J Alloys Compd 370: pp. 186-191 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Tungsten and nickel bimetallic nanoparticle is synthesized by radio frequency thermal plasma process which belongs to the vapor phase condensation technology. The morphology and chemical composition of the synthesized particle were investigated using the conventional nanoparticle transmission electron microscopy (TEM) sample. A few part of them looked like core/shell structured particle, but ambiguities were caused by either TEM sample preparation or TEM analysis. In order to clarify whether a core/shell structure is developed for the particle, various methodologies were tried to prepare a cross-sectional TEM sample. Focused ion beam (FIB) milling was conducted for cold-compacted particles, dispersed particles on silicon wafer, and impregnated particles with epoxy which is compatible with electron beam. A sound cross-sectional sample was just obtained from cyanoacrylate impregnation and FIB milling procedure. A tungsten-cored nickel shell structure was precisely confirmed with aid of cross-sectional sample preparation method.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700