IGF1 3′UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29 family in osteosarcoma
详细信息    查看全文
  • 作者:Shuming Gao ; Cai Cheng ; Hanwen Chen ; Min Li ; Kehun Liu…
  • 关键词:Osteosarcoma ; IGF1 ; ceRNA ; VEGF ; miR ; 29a ; miR ; 29b ; miR ; 29c ; Angiogenesis
  • 刊名:Journal of Molecular Histology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:47
  • 期:2
  • 页码:135-143
  • 全文大小:1,635 KB
  • 参考文献:Bach LA (2015) Endothelial cells and the IGF system. J Mol Endocrinol 54:R1–R13. doi:10.​1530/​JME-14-0215 CrossRef PubMed
    Binet F, Sapieha P (2015) ER stress and angiogenesis. Cell Metab. doi:10.​1016/​j.​cmet.​2015.​07.​010 PubMed
    Chen P et al (2012) The distribution of IGF2 and IMP3 in osteosarcoma and its relationship with angiogenesis. J Mol Histol 43:63–70. doi:10.​1007/​s10735-011-9370-2 CrossRef PubMed
    Cortez MA et al (2010) miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosom Cancer 49:981–990. doi:10.​1002/​gcc.​20808 CrossRef PubMed
    Dobrucki LW et al (2010) Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol 48:1071–1079. doi:10.​1016/​j.​yjmcc.​2009.​10.​008 CrossRef PubMed PubMedCentral
    Fan YC, Mei PJ, Chen C, Miao FA, Zhang H, Li ZL (2013) MiR-29c inhibits glioma cell proliferation, migration, invasion and angiogenesis. J Neurooncol 115:179–188. doi:10.​1007/​s11060-013-1223-2 CrossRef PubMed
    Hou CH, Lin FL, Tong KB, Hou SM, Liu JF (2014) Transforming growth factor alpha promotes osteosarcoma metastasis by ICAM-1 and PI3 K/Akt signaling pathway. Biochem Pharmacol 89:453–463. doi:10.​1016/​j.​bcp.​2014.​03.​010 CrossRef PubMed
    Hu Y et al (2015) Evaluation of miR-29c inhibits endotheliocyte migration and angiogenesis of human endothelial cells by suppressing the insulin like growth factor 1. Am J Transl Res 7:866–877PubMed PubMedCentral
    Isakoff MS, Bielack SS, Meltzer P, Gorlick R (2015) Osteosarcoma: current treatment and a collaborative pathway to success. J Clin Oncol. doi:10.​1200/​JCO.​2014.​59.​4895
    Jiang H, Zhang G, Wu JH, Jiang CP (2014) Diverse roles of miR-29 in cancer (review). Oncol Rep 31:1509–1516. doi:10.​3892/​or.​2014.​3036 PubMed
    Karginov FV, Hannon GJ (2013) Remodeling of Ago2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev 27:1624–1632. doi:10.​1101/​gad.​215939.​113 CrossRef PubMed PubMedCentral
    Liu K, Ying Z, Qi X, Shi Y, Tang Q (2015) MicroRNA-1 regulates the proliferation of vascular smooth muscle cells by targeting insulin-like growth factor 1. Int J Mol Med 36:817–824. doi:10.​3892/​ijmm.​2015.​2277 PubMed
    Poliseno L, Pandolfi PP (2015) PTEN ceRNA networks in human cancer. Methods 77–78:41–50. doi:10.​1016/​j.​ymeth.​2015.​01.​013 CrossRef PubMed
    Qu J, Lu D, Guo H, Miao W, Wu G, Zhou M (2015) MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway. Mol Cell Biochem. doi:10.​1007/​s11010-015-2565-1
    Rao N, Lee YF, Ge R (2015) Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol Sin. doi:10.​1038/​aps.​2015.​73
    Rivas-Fuentes S, Salgado-Aguayo A, Pertuz Belloso S, Gorocica Rosete P, Alvarado-Vasquez N, Aquino-Jarquin G (2015) Role of chemokines in non-small cell lung cancer: angiogenesis and inflammation. J Cancer 6:938–952. doi:10.​7150/​jca.​12286 CrossRef PubMed PubMedCentral
    Shi X, Teng F (2015) Down-regulated miR-28-5p in human hepatocellular carcinoma correlated with tumor proliferation and migration by targeting insulin-like growth factor-1 (IGF-1). Mol Cell Biochem. doi:10.​1007/​s11010-015-2506-z
    Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ (2015) LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 6:11652–11663CrossRef PubMed PubMedCentral
    Shigematsu S, Yamauchi K, Nakajima K, Iijima S, Aizawa T, Hashizume K (1999) IGF-1 regulates migration and angiogenesis of human endothelial cells. Endocr J 46(Suppl):S59–S62CrossRef PubMed
    Sohi G, Revesz A, Ramkumar J, Hardy DB (2015) Higher hepatic miR-29 expression in undernourished male rats during the postnatal period targets the long-term repression of IGF-1. Endocrinology 156:3069–3076. doi:10.​1210/​EN.​2015-1058 CrossRef PubMed
    Solarek W, Czarnecka AM, Escudier B, Bielecka ZF, Lian F, Szczylik C (2015) Insulin and IGFs in renal cancer risk and progression. Endocr Relat Cancer 22:R253–R264. doi:10.​1530/​ERC-15-0135 CrossRef PubMed
    Tabatabaei SH, Jahanshahi G, Dehghan Marvasti F (2015) Diagnostic challenges of low-grade central osteosarcoma of jaw: a literature review. J Dent 16:62–67
    Tang HB, Ren YP, Zhang J, Ma SH, Gao F, Wu YP (2007) Correlation of insulin-like growth factor-1 (IGF-1) to angiogenesis of breast cancer in IGF-1-deficient mice. Ai zheng = Aizheng = Chin J Cancer 26:1215–1220
    Toffanin S, Sia D, Villanueva A (2012) microRNAs: new ways to block tumor angiogenesis? J Hepatol 57:490–491. doi:10.​1016/​j.​jhep.​2012.​06.​005 CrossRef PubMed
    Wang W, Zhang E, Lin C (2015) MicroRNAs in tumor angiogenesis. Life Sci 136:28–35. doi:10.​1016/​j.​lfs.​2015.​06.​025 CrossRef PubMed
    Xu J et al (2015) The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res. doi:10.​1093/​nar/​gkv853
    Yanaihara N et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198. doi:10.​1016/​j.​ccr.​2006.​01.​025 CrossRef PubMed
    Yancopoulos GD (2010) Clinical application of therapies targeting VEGF. Cell 143:13–16. doi:10.​1016/​j.​cell.​2010.​09.​028 CrossRef PubMed
    Yang J et al (2014) FOXO1 3′UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett 588:3218–3224. doi:10.​1016/​j.​febslet.​2014.​07.​003 CrossRef PubMed
    Zheng L, Li X, Gu Y, Lv X, Xi T (2015) The 3′UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat 150:105–118. doi:10.​1007/​s10549-015-3298-2 CrossRef PubMed
    Zou Y et al (2015) miR-29c suppresses pancreatic cancer liver metastasis in an orthotopic implantation model in nude mice and affects survival in pancreatic cancer patients. Carcinogenesis 36:676–684. doi:10.​1093/​carcin/​bgv027 CrossRef PubMed
  • 作者单位:Shuming Gao (1)
    Cai Cheng (1)
    Hanwen Chen (1)
    Min Li (1)
    Kehun Liu (1)
    Guangya Wang (1)

    1. Department of orthopaedics, Cangzhou Central Hospital, Xinhua Road, Cangzhou, Hebei Province, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Biomedicine
    Developmental Biology
  • 出版者:Springer Netherlands
  • ISSN:1567-2387
文摘
Osteosarcoma is one of the most common malignant bone tumors in human worldwide. Angiogenesis is a pivotal process during osteosarcoma development. Insulin-like growth factor 1 (IGF1) has been reported to promote angiogenesis. However, the role of 3′ untranslational region (3′UTR) of IGF1 mRNA in angiogenic activity in osteosarcomas is still unknown. In the present study, we performed gain-of-function assays to investigate the role of IGF1-3′UTR in angiogenesis. For the first time, we demonstrated that IGF1 3′UTR increased VEGF expression and promotes angiogenesis in osteosarcoma cells. In addition, RNA-immunoprecipitation and luciferase reporter assays showed that IGF1 3′UTR was a direct target of miR-29s. Our data also demonstrated that there existed a competition of miR-29s between IGF1-3′UTR and VEGF mRNA, and IGF1-3′UTR promoted angiogenesis at least in part via sponging miR-29s. Taken together, our study suggests that IGF1-3′UTR functions as a ceRNA in promoting angiogenesis by sponging miR-29s in osteosarcoma.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700