Analysis of EDZ Development of Columnar Jointed Rock Mass in the Baihetan Diversion Tunnel
详细信息    查看全文
  • 作者:Xian-Jie Hao ; Xia-Ting Feng ; Cheng-Xiang Yang…
  • 关键词:Columnar jointed rock mass ; Excavation damaged zone ; Time ; dependent behaviour ; Long ; term stability
  • 刊名:Rock Mechanics and Rock Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:49
  • 期:4
  • 页码:1289-1312
  • 全文大小:3,678 KB
  • 参考文献:Barton N (1976) The shear strength of rock and rock joints. Int J Rock Mech Min Sci Geomech Abstr 13(9):255–279CrossRef
    Belin S (1992) Application of backscattered electron imaging to the study of source rocks micro textures. Org Geochem 18:333–346CrossRef
    Boidy E, Bouvard A, Pellet F (2002) Back analysis of time-dependent behavior of a test gallery in claystone. Tunn Undergr Space Technol 17(4):415–424CrossRef
    Chambon P, Corte JF (1994) Shallow tunnels in cohesionless soil: stability of tunnel face. J Geotech Eng 120(7):1148–1165CrossRef
    Côme B, Johnston P, Muller A (1984) Design and instrumentation of in situ experiments in underground laboratories for radioactive waste disposal. Taylor & Francis, London
    Cramer M, Dischler S, Erb D, Berlin G, Wittreich C, Bauer R (1987) Geomechanical testing development for the Basalt Waste Isolation Project. The 28th US symposium on rock mechanics (USRMS)
    Cruikshank KM (1996) Fractography: fracture topography as a tool in fracture mechanics and stress analysis. J Struct Geol 18(9):1182–1183CrossRef
    Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):107–116CrossRef
    Eberhardt E (2001) Numerical modeling of three-dimension stress rotation ahead of an advancing tunnel face. Int J Rock Mech Min Sci 38(4):499–518CrossRef
    Erarslan N, Williams DJ (2013) Mixed-mode fracturing of rocks under static and cyclic loading. Rock Mech Rock Eng 46(5):1035–1052CrossRef
    Fahimifar A, Monshizadeh TF, Hedayat A, Vakilzadeh A (2010) Analytical solution for the excavation of circular tunnels in a visco-elastic Burger’s material under hydrostatic stress field. Tunn Undergr Space Technol 25(4):297–304CrossRef
    Feng XT, Hudson JA (2009) Specifying the information required for rock mechanics modeling and rock engineering design. Int J Rock Mech Min Sci 47(2):179–194CrossRef
    Feng XT, Zhang ZQ, Sheng Q (2000) Estimating mechanical rock mass parameters relating to the Three Gorges Project permanent shiplock using an intelligent displacement back analysis method. Int J Rock Mech Min Sci 37(7):1039–1054CrossRef
    Feng XT, Chen BR, Yang CX, Zhou H, Ding XL (2006) Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. Int J Rock Mech Min Sci 43(5):789–801CrossRef
    Glamheden R and Hökmark H (2010) Creep in jointed rock masses Main report of the SR-Can project. Swedish Nuclear Fuel and Waste Management Co(SKB), Stockholm, Sweden SKB Tech Rep R-06-94
    Goehring L, Lin ZQ, Morris SW (2006) Experimental investigation of the scaling of columnar joints. Phys Rev E 74(3):1–13CrossRef
    Golshani A, Oda M, Okui Y, Takemura T, Munkhtogoo E (2007) Numerical simulation of the excavation damaged zone around an opening in brittle rock. Int J Rock Mech Min Sci 44(6):835–845CrossRef
    Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model—Part II mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25(3):117–125CrossRef
    Hatzor YH, Feng XT, Li SJ, Yagoda-Bira G, Jiang Q, Hu LX (2015) Tunnel reinforcement in columnar jointed basalt: the role of rock mass anisotropy. Tunn Undergr Space Technol 46(2):1–11CrossRef
    Hoek E (1998) Keynote address: tunnel support in weak rock. In: Proceedings of the symposium of sedimentary rock engineering, ISRM Regional Symposium, Taipei, Taiwan, pp 281–292
    Hoek E, Brown ET (1997) Practical estimates or rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186CrossRef
    Hommand-Etienne F, Hoxha D, Shao JF (1998) A continuum damage constitutive law for brittle rocks. Comput Geotech 22(2):135–151CrossRef
    Hudson JA, Baökström A, Rutqvist J, Jing L, Backers T, Chijimatsu M, Christiansson R, Feng XT, Kobayashi A, Koyama T, Lee HS, Neretnieks I, Pan PZ, Rinne M, Shen BT (2009) Characterizing and modeling the excavation damaged zone (EDZ) in crystalline rock in the context of radioactive waste disposal. Environ Geol 57(6):1275–1297CrossRef
    James JG (2009) Basalt columns: large scale constitutional supercooling? J Volcanol Geotherm Res 184:347–350CrossRef
    James MD, Atilla A (1987) Surface morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol Soc Amer Bull 99(5):5605–5607
    Jiang Q, Feng XT, Hatzor YH, Hao XJ (2014) Mechanical anisotropy of columnar jointed basalts: an example from the Baihetan hydropower station, China. Eng Geol 175:35–45CrossRef
    Kaiser PK, Kim BH (2015) Characterization of strength of intact brittle rock considering confinement-dependent failure processes. Rock Mech Rock Eng 48(1):107–119CrossRef
    Kamata G, Masimo H (2003) Centrifuge model test of tunnel face reinforcement by bolting. Tunn Undergr Space Technol 18(2):205–216CrossRef
    Kemeny J (2003) The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities: a fracture mechanics approach. Rock Mech Rock Eng 36(1):27–38CrossRef
    King M, Myer L, Rezowalli J (1986) Experimental studies of elastic-wave propagation in a columnar-jointed rock mass. Geophys Prospect 34(8):1185–1199CrossRef
    Krinsley DH, Pye K, Boggs S, Tovey NK (1998) Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks. Cambridge University Press, CambridgeCrossRef
    Kruhl JH (2013) Fractal-geometry techniques in the quantification of complex rock structures: a special view on scaling regimes, inhomogeneity and anisotropy. J Struct Geol 46:2–21CrossRef
    Kuzmin VA, Skibitskaya NA (2011) Application of Fourier analysis of scanning electron microscopy images for studying variation features of reservoir properties of carbonate rocks at stages of catagenetic transformations. J Surf Invest X-ray Synchrotron Neutron Tech 5(5):1016–1020CrossRef
    Lachenbruch AH (1962) Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geol Soc Am Bull 70:69
    Li SJ, Feng XT, Li ZH, Chen BR, Zhang CQ, Zhou H (2012) In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station. Eng Geol 137:85–96CrossRef
    Martin Z, Simon L, Dov B (2014) Growth of exfoliation joints and near-surface stress orientations inferred from fractographic markings observed in the upper Aar valley (Swiss Alps). Tectonophysics 626(20):1–20
    Mertens J, Bastiaens W, Dehandschutter B (2004) Characterization of induced discontinuities in the Boom clay around the underground excavations (URF, Mol, Belgium). Appl Clay Sci 26(4):413–428CrossRef
    Mostafa S, Abolfazl T, Mohammad AM (2013) Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method. Tunn Undergr Space Technol 38:348–356CrossRef
    Müller G (1998) Starch columns: analog model for basalt columns. J Geophys Res 103:15239–15253CrossRef
    Nadimi S, Shahriar K, Sharifzadeh M, Moarefvand P (2011) Triaxial creep tests and back analysis of time-dependent behavior of Siah Bisheh cavern by 3-Dimensional distinct element method. Tunn Undergr Space Technol 26:155–162CrossRef
    Nomikos P, Rahmannejad R, Sofianos A (2011) Supported axisymmetric tunnels within linear viscoelastic Burgers rocks. Rock Mech Rock Eng 44(5):553–564CrossRef
    Park SH, Adachi T, Kimura M, Kimura M, Kishida K (1999) Trap door test using aluminum blocks. In: Proceedings of the 29th Japan symposium of rock mechanics, pp 106–11
    Pellet F, Roosefid M, Deleruyelle F (2009) On the 3D numerical modeling of the time-dependent development of the damage zone around underground galleries during and after excavation. Tunn Undergr Space Technol 24:665–674CrossRef
    Rutqvist J, Börgesson L, Chijimatsu M, Hernelind J, Jing L, Kobayashi A, Nguyen S (2008) Modeling of damage, permeability changes and pressure responses during excavation of the TSX tunnel in granitic rock at URL. Can Environ Geol 57(6):1263–1274CrossRef
    Sakurai S (1978) Approximate time-dependent analysis of tunnel supports structure considering progress of tunnel face. Int J Numer Anal Met 2(2):159–175CrossRef
    Sellers EJ, Klerck P (2000) Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels. Tunn Undergr Space Technol 15(4):463–469CrossRef
    Shao H, Schuster K, Sönnke J et al (2008) EDZ development in indurate clay formations—in situ borehole measurements and coupled HM modeling. Phys Chem Earth 33(Suppl 1):388–395CrossRef
    Singh M, Rao KS, Ramamurthy T (2002) Strength and deformational behavior of a jointed rock mass. Rock Mech Rock Eng 35(1):45–64CrossRef
    Sitharam TG, Shimizu N, Sridevi J (2001) Practical equivalent continuum characterization of jointed rock masses. Int J Rock Mech Min Sci 38(3):437–448CrossRef
    Spry A (1962) The origin of columnar jointing, particularly in basalt flows. J Geol Soc Austr 8(2):191–216CrossRef
    Sulem J, Panet M, Guenot A (1987) An analytical solution for time-dependent displacements in circular tunnel. Int J Rock Mech Min Sci Geomech Abstr 24(3):155–164CrossRef
    Wang CY, Law KT, Sheng Q, Ge XR (2002) Borehole camera technology and its application in the Three Gorges project. In: Proceedings of the 55th Canadian geotechnical and 3rd Joint IAH-CNC and CGS groundwater specialty conferences, Niagara Falls, Ontario, pp 601–608
    Yoshida H, Horii A (1992) Micromechanics-based model for creep behavior of rock arch. Appl Rev 45(8):294–303
    Zhang YH, Zhou HM, Zhong ZW (2011) In situ rock masses triaxial test system YXSW–12 and its application. Chin J Rock Mech Eng 30(11):2313–2320
    Zhao J (1997) Joint matching and shear strength, part A: joint matching coefficient. Int J Rock Mech Min Sci 34(2):173–178CrossRef
  • 作者单位:Xian-Jie Hao (1)
    Xia-Ting Feng (1)
    Cheng-Xiang Yang (2)
    Quan Jiang (1)
    Shao-Jun Li (1)

    1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, Hubei, People’s Republic of China
    2. School of Resources and Civil Engineering, Northeastern University, Shenyang, 110004, People’s Republic of China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Civil Engineering
  • 出版者:Springer Wien
  • ISSN:1434-453X
文摘
Due to the time dependency of the crack propagation, columnar jointed rock masses exhibit marked time-dependent behaviour. In this study, in situ measurements, scanning electron microscope (SEM), back-analysis method and numerical simulations are presented to study the time-dependent development of the excavation damaged zone (EDZ) around underground diversion tunnels in a columnar jointed rock mass. Through in situ measurements of crack propagation and EDZ development, their extent is seen to have increased over time, despite the fact that the advancing face has passed. Similar to creep behaviour, the time-dependent EDZ development curve also consists of three stages: a deceleration stage, a stabilization stage, and an acceleration stage. A corresponding constitutive model of columnar jointed rock mass considering time-dependent behaviour is proposed. The time-dependent degradation coefficient of the roughness coefficient and residual friction angle in the Barton–Bandis strength criterion are taken into account. An intelligent back-analysis method is adopted to obtain the unknown time-dependent degradation coefficients for the proposed constitutive model. The numerical modelling results are in good agreement with the measured EDZ. Not only that, the failure pattern simulated by this time-dependent constitutive model is consistent with that observed in the scanning electron microscope (SEM) and in situ observation, indicating that this model could accurately simulate the failure pattern and time-dependent EDZ development of columnar joints. Moreover, the effects of the support system provided and the in situ stress on the time-dependent coefficients are studied. Finally, the long-term stability analysis of diversion tunnels excavated in columnar jointed rock masses is performed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700