Dual-stimuli responsive polymeric micelles: preparation, characterization, and controlled drug release
详细信息    查看全文
  • 作者:Wen-Chung Wu ; Yu-Sheng Kuo ; Chung-Hao Cheng
  • 关键词:Amphiphilic block copolymer ; Micelle ; Stimuli ; responsive ; LCST ; Controlled drug release
  • 刊名:Journal of Polymer Research
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:22
  • 期:5
  • 全文大小:2,033 KB
  • 参考文献:1.Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360CrossRef
    2.Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555CrossRef
    3.Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotech 2:751–760CrossRef
    4.Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782CrossRef
    5.Yokoyama M (2010) Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin Drug Deliv 7(2):145–158CrossRef
    6.Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160CrossRef
    7.Chang B, Sha X, Guo J, Jiao Y, Wang C, Yang W (2011) Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem 21(25):9239–9247CrossRef
    8.Zhou L, Chen Z, Dong K, Yin M, Ren J, Qu X (2014) DNA-mediated construction of hollow upconversion nanoparticles for protein harvesting and near-infrared light triggered release. Adv Mater 26(15):2424–2430CrossRef
    9.Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33(1):113–137CrossRef
    10.Fox ME, Szoka FC, Frechet JMJ (2009) Soluble Polymer Carriers for the Treatment of Cancer: The Importance of Molecular Architecture. Acc Chem Res 42(8):1141–1151CrossRef
    11.Shin HC, Alani AW, Cho H, Bae Y, Kolesar JM, Kwon GS (2011) A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Mol Pharmaceutics 8(4):1257–1265CrossRef
    12.Mahmud A, Xiong XB, Aliabadi HM, Lavasanifar A (2007) Polymeric micelles for drug targeting. J Drug Targeting 15(9):553–584CrossRef
    13.Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release 65:271–284CrossRef
    14.Fang J, Nakamura H, Maeda H (2011) The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151CrossRef
    15.Gil E, Hudson S (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222CrossRef
    16.de Las Heras Alarcon C, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285CrossRef
    17.Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Controlled Release 126(3):187–204CrossRef
    18.Meng F, Zhong Z, Feijen J (2009) Stimuli-Responsive Polymersomes for Programmed Drug Delivery. Biomacromolecules 10(2):197–209CrossRef
    19.Zhao H, Sterner ES, Coughlin EB, Theato P (2012) o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 45(4):1723–1736CrossRef
    20.Zhao Y (2012) Light-Responsive Block Copolymer Micelles. Macromolecules 45(9):3647–3657CrossRef
    21.Jiang J, Tong X, Zhao Y (2005) A New Design for Light-Breakable Polymer Micelles. J Am Chem Soc 127(23):8290–8291CrossRef
    22.Jiang J, Tong X, Morris D, Zhao Y (2006) Toward Photocontrolled Release Using Light-Dissociable Block Copolymer Micelles. Macromolecules 39(13):4633–4640CrossRef
    23.Babin J, Pelletier M, Lepage M, Allard JF, Morris D, Zhao Y (2009) A new two-photon-sensitive block copolymer nanocarrier. Angew Chem Int Ed 48(18):3329–3332CrossRef
    24.Wang G, Tong X, Zhao Y (2004) Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates. Macromolecules 37(24):8911–8917CrossRef
    25.Lim S-J, Carling C-J, Warford CC, Hsiao D, Gates BD, Branda NR (2011) Multifunctional photo- and thermo-responsive copolymer nanoparticles. Dyes Pigm 89(3):230–235CrossRef
    26.Lee HI, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, Kowalewski T, Matyjaszewski K (2007) Light-induced reversible formation of polymeric micelles. Angew Chem Int Ed 46(14):2453–2457CrossRef
    27.Chen CJ, Liu GY, Shi YT, Zhu CS, Pang SP, Liu XS, Ji J (2011) Biocompatible micelles based on comb-like PEG derivates: formation, characterization, and photo-responsiveness. Macromol Rapid Commun 32(14):1077–1081CrossRef
    28.Chilkotia A, Dreher MR, Meyer DE, Raucher D (2002) Targeted drug delivery by thermally responsive polymers. Adv Drug Deliv Rev 54:613–630CrossRef
    29.Lutz J-F (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. J Polym Sci Part A: Polym Chem 46(11):3459–3470CrossRef
    30.Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34(9):893–910CrossRef
    31.Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657CrossRef
    32.Chen CY, Kim TH, Wu WC, Huang CM, Wei H, Mount CW, Tian Y, Jang SH, Pun SH, Jen AK (2013) pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials 34(18):4501–4509CrossRef
    33.Bahadur KCR, Thapa B, Xu P (2012) pH and redox dual responsive nanoparticle for nuclear targeted drug delivery. Mol Pharm 9(9):2719–2729CrossRef
    34.Gan Q, Lu X, Dong W, Yuan Y, Qian J, Li Y, Shi J, Liu C (2012) Endosomal pH-activatable magnetic nanoparticle-capped mesoporous silica for intracellular controlled release. J Mater Chem 22(31):15960–15968CrossRef
    35.Du JZ, Du XJ, Mao CQ, Wang J (2011) Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563CrossRef
    36.Qiao ZY, Zhang R, Du FS, Liang DH, Li ZC (2011) Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J Controlled Release 152(1):57–66CrossRef
    37.Jiang X, Lavender CA, Woodcock JW, Zhao B (2008) Multiple Micellization and Dissociation Transitions of Thermo- and Light-Sensitive Poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in Water. Macromolecules 41(7):2632–2643CrossRef
    38.Feng Z, Lin L, Yan Z, Yu Y (2010) Dual Responsive Block Copolymer Micelles Functionalized by NIPAM and Azobenzene. Macromol Rapid Commun 31(7):640–644CrossRef
    39.Doh J, Irvine DJ (2004) Photogenerated Polyelectrolyte Bilayers from an Aqueous-Processible Photoresist for Multicomponent Protein Patterning. J Am Chem Soc 126:9170–9171CrossRef
    40.Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876CrossRef
    41.Chen JI, Wu WC (2013) Fluorescent polymeric micelles with aggregation-induced emission properties for monitoring the encapsulation of Doxorubicin. Macromol Biosci 13(5):623–632CrossRef
    42.Wu W-C, Huang C-M, Liao P-W (2014) Dual-sensitive and folate-conjugated mixed polymeric micelles for controlled and targeted drug delivery. React Funct Polym 81:82–90CrossRef
    43.Kim C, Hsieh Y-L (2001) Wetting and absorbency of nonionic surfactant solutions on cotton fabrics. Colloids Surf A 187–188:385–397CrossRef
    44.Yamamoto T, Yokoyama M, Opanasopit P, Hayama A, Kawano K, Maitani Y (2007) What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core. J Controlled Release 123(1):11–18CrossRef
    45.Han S, Hagiwara M, Ishizone T (2003) Synthesis of Thermally Sensitive Water-Soluble olymethacrylates by Living Anionic Polymerizations of Oligo(ethylene glycol) ethyl Ether Methacrylates. Macromolecules 36:8312–8319CrossRef
    46.Gaud V, Rougé F, Gnanou Y, Desvergne J-P (2012) Synthesis and properties of new photosensitive triazene and o-nitrobenzene methacrylates. React Funct Polym 72(8):521–532CrossRef
  • 作者单位:Wen-Chung Wu (1)
    Yu-Sheng Kuo (1)
    Chung-Hao Cheng (1)

    1. Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1572-8935
文摘
The preparation of stimuli-responsive polymeric micelles sensitive to both temperature and UV irradiation is achieved through the self-assembly from a series of amphiphilic block copolymers, poly(triethylene glycol methacrylate)-b-poly(2-nitrobenzyl methacrylate) (PTEGMA-b-PNBMA). The block ratios of the hydrophilic and thermo-responsive PTEGMA block to the hydrophobic and photoclevable PNBMA block are manipulated in the range of 4:1 to 1:1. The nanostructure and stimuli-responsive properties of the micelles are well-correlated with the chemical structures of the copolymers. The thermal transition temperature of micelles is reduced to 38–41 °C and close to body temperature as compared to that of PTEGMA homopolymer around 52 °C. After UV irradiation, the enhanced hydrophilicity of micelle core causes swelling and increased size of micelles. The capabilities of these micelles for drug encapsulation are demonstrated by using doxorubicin as the model drug and the subsequent drug release could be triggered by elevated temperature and/or UV irradiation. Furthermore, the potential application of these micelles in controlled drug release is explored by studying the in vitro cytotoxicity of drug-loaded micelles as triggered by external stimuli.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700