Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels
详细信息    查看全文
  • 作者:Tamás Ungár ; Stefanus Harjo ; Takuro Kawasaki…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:48
  • 期:1
  • 页码:159-167
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology;
  • 出版者:Springer US
  • ISSN:1543-1940
  • 卷排序:48
文摘
Based on high-resolution neutron diffraction experiments, we will show that in lath martensite steels, the initially homogeneous dislocation structure, i.e., homogeneous on the length scale of grain size, is disrupted by plastic deformation, which, in turn, produces a composite on the length scale of martensite lath packets. The diffraction patterns of plastically strained martensitic steel reveal characteristically asymmetric peak profiles in the same way as has been observed in materials with heterogeneous dislocation structures. The quasi homogeneous lath structure, formed by quenching, is disrupted by plastic deformation producing a composite structure. Lath packets oriented favorably or unfavorably for dislocation glide become soft or hard. Two lath packet types develop by work softening or work hardening in which the dislocation densities become smaller or larger compared to the initial average dislocation density. The decomposition into soft and hard lath packets is accompanied by load redistribution and the formation of long-range internal stresses between the two lath packet types. The composite behavior of plastically deformed lath martensite opens a new way to understand the elastic-plastic response in this class of materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700