The Deformation Behavior and Microstructure Evolution of a Mn- and Cr-Containing Al-Mg-Si-Cu Alloy During Hot Compression and Subsequent Heat Treatment
详细信息    查看全文
  • 作者:Yi Xu ; Hiromi Nagaumi ; Yi Han ; Gongwang Zhang…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2017
  • 出版时间:March 2017
  • 年:2017
  • 卷:48
  • 期:3
  • 页码:1355-1365
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Metallic Materials; Characterization and Evaluation of Materials; Structural Materials; Surfaces and Interfaces, Thin Films; Nanotechnology;
  • 出版者:Springer US
  • ISSN:1543-1940
  • 卷排序:48
文摘
Hot compression tests on a newly developed Mn- and Cr-containing Al-Mg-Si-Cu alloy were carried out at temperatures ranging from 623 K (350 °C) to 823 K (550 °C) and strain rates between 0.001 and 1 s−1 after casting and subsequent homogenization heat treatment. The true stress–true strain curves of the alloy exhibited a peak stress at a small plastic strain followed by dynamic flow softening. Using the constitutive equation containing the strain rate, peak stress, and temperature, the activation energy for hot deformation in the alloy was determined to be 249.67 kJ/mol, much higher than that (143.4 kJ/mol) for self-diffusion in pure Al. Scanning transmission electron microscopy experiments revealed that Mn- and Cr-containing α-dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which was responsible for the increase in activation energy for hot deformation in the alloy. A threshold stress was consequently introduced and determined in the constitutive equation to count for the dispersoid hardening effect on hot deformation in the alloy. Electron back-scatter diffraction measurements revealed that the softening occurred in the alloy was mainly due to dynamic recovery taking place at relatively large Z values, and that it was dominated by continuous dynamic recrystallization at relatively low Z. In subsequent annealing after hot deformation at large Z, abnormal grain growth could occur, as a result of the critical strain-annealing effect. After upsetting at higher temperatures, the alloy showed superior tensile properties due to a high non-recrystallized area fraction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700