Fatigue Crack Propagation and Fracture Toughness of Laser Rapid Manufactured Structures of AISI 316L Stainless Steel
详细信息    查看全文
  • 作者:P. Ganesh (1)
    Rakesh Kaul (1)
    G. Sasikala (2)
    Harish Kumar (1)
    S. Venugopal (2)
    Pragya Tiwari (1)
    Sanjay Rai (1)
    R. C. Prasad (3)
    L. M. Kukreja (1)
  • 关键词:Laser rapid manufacturing ; AISI 316L stainless steel ; Fatigue ; Fracture toughness ; Mechanical characterization
  • 刊名:Metallography, Microstructure, and Analysis
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:3
  • 期:1
  • 页码:36-45
  • 全文大小:2,109 KB
  • 参考文献:1. Laser Engineered Net Shaping, http://www.sandia.gov/mst/pdf/LENS.pdf. Accessed 7 Dec 2012
    2. P.L. Blackwell, A. Wisbey, Laser-aided manufacturing technologies: their application to the near-net shape forming of a high-strength titanium alloy. J. Mater. Process. Technol. 170, 268-76 (2005) CrossRef
    3. F. Wang, J. Mei, Wu Xinhua, Direct laser fabrication of Ti 6Al 4V/TiB. J. Mater. Process. Technol. 195, 321-26 (2008) CrossRef
    4. Robert P. Mugde, Nicholas R. Wald, Laser engineered net shaping advances additive manufacturing and repair. Weld. J. 86, 44-8 (2007)
    5. G.P. Dinda, A.K. Dasgupta, J. Majumder, Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater. Sci. Eng. A 509, 98-04 (2009) CrossRef
    6. A. Pinkerton, W. Wang, L. Li, Component repair using laser direct metal deposition. Proc. Inst. Mech. Eng. B 222, 827-36 (2008) CrossRef
    7. G.K. Lewis, E. Schlinenger, Practical consideration and capabilities for laser assisted direct metal deposition. Mater. Des. 21, 417-23 (2000) CrossRef
    8. C.P. Paul, A. Khajepour, Automated laser fabrication of cemented carbide components. Opt. Laser Technol. 40, 735-41 (2008) CrossRef
    9. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, A.K. Nath, Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 39, 800-05 (2007) CrossRef
    10. L. Xue, M.U. Islam, Free-form laser consolidation for producing metallurgically sound and functional components. J. Laser Appl. 12, 160-65 (2000) CrossRef
    11. Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, P.T. Wang, Microporosity effects on cyclic plasticity and fatigue of LENS-processed steel. Acta Mater. 58(4029), 4038 (2010)
    12. A. Theriault, L. Xue, J.R. Dryden, Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures. Mater. Sci. Eng. A 516, 217-25 (2009) CrossRef
    13. A.K. Nath, L. Abhinandan, P. Choudhary, Operational characteristics of a pulser-sustained DC-excited transverse-flow CW CO2 laser of 5-kw output power. Opt. Eng. 33, 1889-893 (1994) CrossRef
    14. A.K. Nath, T. Reghu, C.P. Paul, M.O. Ittoop, P. Bhargava, High-power transverse flow CW CO2 laser for material processing applications. Opt. Laser Technol. 37, 329-35 (2005) CrossRef
    15. P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad, L.M. Kukreja, Fatigue and fracture toughness characteristics of laser rapid manufactured inconel 625 structures. Mater. Sci. Eng. A 527, 7490-497 (2010)
    16. P. Ganesh, A. Moitra, P. Tiwari, S. Sathyanarayanan, H. Kumar, S.K. Rai, R. Kaul, C.P. Paul, R.C. Prasad, L.M. Kukreja, Fracture behavior of laser-clad joint of Stellite 21 on AISI 316L stainless steel. Mater. Sci. Eng. A 527, 3748-756 (2010) CrossRef
    17. ASTM Standard E647-13e1, / Standard Test Method for Measurement of Fatigue Crack Growth Rates (ASTM International, West Conshohocken, PA, 2013)
    18. ASTM Standard E1820-11e1, / Standard Test Method for Measurement of Fracture Toughness (ASTM International, West Conshohocken, PA, 2011)
    19. ASM Metals Handbook, Properties and selection: stainless steels, tool materials and special-purpose metals, in / Metals Handbook, Vol. 3, 9th edn, ed. by D. Benjamin, C.W. Kirkpatrick (ASM International, Metals Park, 1980), pp. 113, 21
    20. P. Ganesh, R. Giri, R. Kaul, P.R. Sankar, P. Tiwari, A. Atulkar, R.K. Porwal, R.K. Dayal, L.M. Kukreja, Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel. Mater. Des. 39, 509-21 (2012) CrossRef
    21. ASM Metals handbook, Fatigue and fracture, in / Metals? / Handbook, vol. 19, 10th edn., ed. by S.R. Lampman et al. (ASM International, Materials Park, 1997), pp. 714, 725,733-34
    22. R.L. Tobler, D. Meyn, Cleavage-like fracture along slip planes in Fe-8Cr-Ni-3Mn-.37N austenitic stainless steel at liquid helium temperature. Metall. Trans. A 19(6), 1626-631 (1988) CrossRef
    23. Y. Tomota, Y. Xia, K. Inoue, Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels. Acta Mater. 46(5), 1577-587 (1998) CrossRef
    24. S. Wang, K. Yang, Y. Shan, L. Li, Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels. Mater. Sci. Eng. A 490, 95-04 (2008) CrossRef
    25. K. Rajanna, B. Pathiraj, B.H. Kolstrer, X-ray fractography studies on austenitic stainless steels. Eng. Fract. Mech. 54, 155-66 (1996) CrossRef
    26. V. Tsakaris, D.V. Edmonds, Martensite and deformation Twinning in austenitic steels. Mater. Sci. Eng. A 273-75, 430-36 (1999) CrossRef
    27. M.X. Zhang, P.M. Kelly, J.D. Gates, A model of stress induced martensitic transformation in Fe–Ni–C alloy. Mater. Sci. Eng. A 275, 251-56 (1999) CrossRef
    28. W.-Y. Maeng, M.-H. Kim, Comparative study on the fatigue crack growth behavior of 316L and 316LN stainless steels: effect of microstructure of cyclic plastic strain zone at crack tip. J. Nucl. Mater. 282, 32-9 (2000) CrossRef
    29. A. Milker, Y. Estrin, X.Z. Hu, Magnetic force microscopy of fatigue crack tip region in a 316L austenitic stainless steel. Scripta Mater. 47, 441-46 (2002) CrossRef
    30. A. Pineau, L.F. Van swam, R.M. Pelloux, Cyclic stress–strain behavior of a stainless steel in the Ms–Md range. Scripta Metall. 7, 657-60 (1973) CrossRef
    31. M. Bayerlein, H.J. Christ, H. Mughrabi, Plasticity induced martensitic transformation during cyclic deformation of AIS1 304L stainless steel. Mater. Sci. Eng. A 114, L11–L16 (1989) CrossRef
    32. W. Elber, / The Significance of Fatigue Crack Closure—Damage Tolerance in Aircraft Structures, Special Technical Publication STP 486 (American Society for Testing of Materials, Philadelphia, 1971), pp. 230-42
    33. S.G. Sundaraman, K.A. Padmanabhan, Influence of martensite formation and grain size on the room temperature low cycle fatigue behaviour of AISI 304 LN austenitic stainless steel. Mater. Sci. Technol. 10, 614-20 (1994) CrossRef
    34. A.K. Head, The growth of fatigue cracks. Philos. Mag. 44, 925-38 (1953)
    35. S. Riekehr, G. Cam, J.F. Dos Santos, M. Kocak, Investigation on fracture toughness of laser beam welded steels, in / Proceedings of the European Conference on Laser Treatment of Materials, ed. by B.L. Mordike (Werkstoff-Informationsgesellschaft, Frankfurt, 1998), pp. 405-11
  • 作者单位:P. Ganesh (1)
    Rakesh Kaul (1)
    G. Sasikala (2)
    Harish Kumar (1)
    S. Venugopal (2)
    Pragya Tiwari (1)
    Sanjay Rai (1)
    R. C. Prasad (3)
    L. M. Kukreja (1)

    1. Raja Ramanna Centre for Advanced Technology, Indore, 452 013, India
    2. Indira Gandhi Centre for Atomic Research, Kalpakkam, 603 102, India
    3. Indian Institute of Technology Bombay, Mumbai, 400 076, India
  • ISSN:2192-9270
文摘
Fatigue crack propagation, fracture toughness, and impact toughness of AISI 316L stainless steel fabricated by laser rapid manufacturing with a continuous wave CO2 laser have been systematically studied. Charpy impact toughness of laser rapid manufactured structures was found to be on par with its wrought counterpart. Steady state fatigue crack growth rate in laser rapid manufactured compact tension specimens of AISI 316L stainless steel, in the investigated stress intensity range (ΔK) of 11.4-4?MPa?√m, was comparable to that of 20% cold worked wrought AISI 316 stainless steel. Fatigue crack propagation was found to be transgranular in nature. The initiation fracture toughness (J 0.2) was found to be in the range of 147-59?kJ/m2 while critical crack tip opening displacement (CTODc) fracture toughness values were found to be in the range of 0.5-.64?mm. Fracture toughness values of laser rapid manufactured structures, although inferior to wrought 316 stainless steel, were comparable to that of its weld metal.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700