Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells
详细信息    查看全文
  • 作者:Roland F Hoffmann (1) (4)
    Sina Zarrintan (2) (3)
    Simone M Brandenburg (1)
    Arjan Kol (1)
    Harold G de Bruin (1) (4)
    Shabnam Jafari (3)
    Freark Dijk (3)
    Dharamdajal Kalicharan (3)
    Marco Kelders (6)
    Harry R Gosker (6)
    Nick HT ten Hacken (4) (5)
    Johannes J van der Want (3) (7)
    Antoon JM van Oosterhout (1) (4)
    Irene H Heijink (1) (4) (5)
  • 关键词:Mitochondria ; Primary bronchial epithelial cells ; Smoking ; Reactive oxygen species ; COPD
  • 刊名:Respiratory Research
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:1,212 KB
  • 参考文献:1. Bohr VA, Stevnsner T, De Souza-Pinto NC: Mitochondrial DNA repair of oxidative damage in mammalian cells. / Gene 2002, 286:127-34. CrossRef
    2. Barnes PJ: Transcription factors in airway diseases. / Lab Invest 2006, 86:867-72. vest.3700456" target="_blank" title="It opens in new window">CrossRef
    3. Barnes PJ, Ito K, Adcock IM: Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. / Lancet 2004, 363:731-33. CrossRef
    4. Afonso V, Champy R, Mitrovic D, Collin P, Lomri A: Reactive oxygen species and superoxide dismutases: role in joint diseases. / Joint Bone Spine 2007, 74:324-29. CrossRef
    5. Van der Toorn M, Slebos D-J, De Bruin HG, Leuvenink HG, Bakker SJL, Gans ROB, / et al.: Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. / Am J Physiol Lung Cell Mol Physiol 2007, 292:L1211-L1218. CrossRef
    6. van der-Toorn M, Rezayat D, Kauffman HF, Bakker SJL, Gans ROB, Koe GH, / et al.: Lipid-soluble components in cigarette smoke induce mitochondrial production of reactive oxygen species in lung epithelial cells. / Am J Physiol Lung Cell Mol Physiol 2009, 297:L109-L114. CrossRef
    7. Berman SB, Pineda FJ, Hardwick JM: Mitochondrial fission and fusion dynamics: the long and short of it. / Cell Death Differ 2008, 15:1147-152. CrossRef
    8. Chan DC: Mitochondrial fusion and fission in mammals. / Annu Rev Cell Dev Biol 2006, 22:79-9. v.cellbio.22.010305.104638" target="_blank" title="It opens in new window">CrossRef
    9. Meissner C: Mutations of mitochondrial DNA - cause or consequence of the ageing process? / Z Gerontol Geriatr 2007, 40:325-33. CrossRef
    10. Jendrach M, Pohl S, V?th M, Kowald A, Hammerstein P, Bereiter-Hahn J: Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. / Mech Ageing Dev 2005, 126:813-21. mad.2005.03.002" target="_blank" title="It opens in new window">CrossRef
    11. Detmer SA, Chan DC: Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. / J Cell Biol 2007, 176:405-14. CrossRef
    12. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. / J Cell Biol 2003, 160:189-00. CrossRef
    13. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, / et al.: OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. / Cell 2006, 126:177-89. CrossRef
    14. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, / et al.: Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. / J Biol Chem 2003, 278:7743-746. CrossRef
    15. Griparic L, Van der Wel NN, Orozco IJ, Peters PJ, Van der Bliek AM: Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. / J Biol Chem 2004, 279:18792-8798. CrossRef
    16. Tang S, Le PK, Tse S, Wallace DC, Huang T: Heterozygous mutation of Opa1 in Drosophila shortens lifespan mediated through increased reactive oxygen species production. / PLoS One 2009, 4:e4492. CrossRef
    17. Gottlieb RA, Gustafsson AB: Mitochondrial turnover in the heart. / Biochim Biophys Acta 1813, 2011:1295-301.
    18. Dagda RK, Cherra SJ, Kulich SM, Tandon A, Park D, Chu CT: Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. / J Biol Chem 2009, 284:13843-3855. CrossRef
    19. Martin I, Dawson VL, Dawson TM: Recent advances in the genetics of Parkinson’s disease. / Annu Rev Genomics Hum Genet 2011, 12:301-25. v-genom-082410-101440" target="_blank" title="It opens in new window">CrossRef
    20. Chu CT: A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. / Hum Mol Genet 2010, 19:R28-R37. mg/ddq143" target="_blank" title="It opens in new window">CrossRef
    21. Rahman I, MacNee W: Oxidant/antioxidant imbalance in smokers and chronic obstructive pulmonary disease. / Thorax 1996, 51:348-50. CrossRef
    22. Gongora MC, Lob HE, Landmesser U, Guzik TJ, Martin WD, Ozumi K, / et al.: Loss of extracellular superoxide dismutase leads to acute lung damage in the presence of ambient air: a potential mechanism underlying adult respiratory distress syndrome. / Am J Pathol 2008, 173:915-26. CrossRef
    23. Vaamonde-García C, Riveiro-Naveira RR, Valcárcel-Ares MN, Hermida-Carballo L, Blanco FJ, López-Armada MJ: Mitochondrial dysfunction increases the inflammatory responsiveness to cytokines in normal human chondrocytes. / Arthritis Rheum 2012, 64:2927-936. CrossRef
    24. Schmidt EP, Tuder RM: Role of Apoptosis in Amplifying Inflammatory Responses in Lung Diseases. / J Cell Death 2010, 2010:41-3.
    25. Chang SS, Jiang WW, Smith I, Glazer C, Sun W-Y, Mithani S, / et al.: Chronic cigarette smoke extract treatment selects for apoptotic dysfunction and mitochondrial mutations in minimally transformed oral keratinocytes. / Int J Cancer 2010, 126:19-7. CrossRef
    26. Jendrach M, Mai S, Pohl S, V?th M, Bereiter-Hahn J: Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. / Mitochondrion 2008, 8:293-04. mito.2008.06.001" target="_blank" title="It opens in new window">CrossRef
    27. Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants, and aging. / Cell 2005, 120:483-5. CrossRef
    28. Rabinovich RA, Bastos R, Ardite E, Llinàs L, Orozco-Levi M, Gea J, / et al.: Mitochondrial dysfunction in COPD patients with low body mass index. / Eur Respir J 2007, 29:643-0. CrossRef
    29. Heijink IH, Brandenburg SM, Postma DS, Van Oosterhout AJM: Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery. / Eur Respir J 2012, 39:419-8. CrossRef
    30. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, / et al.: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. / Genome Biol 2002, 3:RESEARCH0034. CrossRef
    31. Santos JH, Mandavilli BS, Van-Houten B: Measuring oxidative mtDNA damage and repair using quantitative PCR. / Methods Mol Biol 2002, 197:159-76.
    32. Ballinger SW, Van Houten B, Jin GF, Conklin CA, Godley BF: Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. / Exp Eye Res 1999, 68:765-2. CrossRef
    33. Ballinger SW, Bouder TG, Davis GS, Judice SA, Nicklas JA, Albertini RJ: Mitochondrial Genome Damage Associated with Cigarette Smoking. / Cancer Res 1996, 56:5692-697.
    34. Di Stefano A, Caramori G, Oates T, Capelli A, Lusuardi M, Gnemmi I, / et al.: Increased expression of nuclear factor- B in bronchial biopsies from smokers and patients with COPD. / Eur Respir J 2002, 20:556-63. CrossRef
    35. Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ: Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. / J Exp Med 2004, 200:689-95. m.20040416" target="_blank" title="It opens in new window">CrossRef
    36. Agarwal AR, Zhao L, Sancheti H, Sundar IK, Rahman I, Cadenas E: Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory response in mouse lung. / Am J Physiol Lung Cell Mol Physiol 2012, 303:L889-L898. doi:10.1152/ajplung.00219 CrossRef
    37. Heijink IH, Brandenburg SM, Noordhoek JA, Slebos D-J, Postma DS, Van Oosterhout AJ: Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD. / Respir Res 2011, 12:110. CrossRef
    38. Hackett NR, Heguy A, Harvey B-G, O’Connor TP, Luettich K, Flieder DB, / et al.: Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. / Am J Respir Cell Mol Biol 2003, 29:331-43. mb.2002-0321OC" target="_blank" title="It opens in new window">CrossRef
    39. Ochs-Balcom HM, Grant BJB, Muti P, Sempos CT, Freudenheim JL, Browne RW, / et al.: Oxidative stress and pulmonary function in the general population. / Am J Epidemiol 2005, 162:1137-145. CrossRef
    40. Ochs-Balcom HM, Grant BJB, Muti P, Sempos CT, Freudenheim JL, Browne RW, / et al.: Antioxidants, oxidative stress, and pulmonary function in individuals diagnosed with asthma or COPD. / Eur J Clin Nutr 2006, 60:991-99. CrossRef
    41. Shigenaga MK, Hagen TM, Ames BN: Review Oxidative damage and mitochondrial decay in aging. / Proc Natl Acad Sci U S A 1994, 91:10771-0778. CrossRef
    42. Fukuchi Y: The aging lung and chronic obstructive pulmonary disease: similarity and difference. / Proc Am Thorac Soc 2009, 6:570-72. CrossRef
    43. Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. / Trends Cell Biol 2000, 10:369-77. CrossRef
    44. Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, / et al.: Mitochondria-ros crosstalk in the control of cell death and aging. / J Signal Transduct 2012, 2012:329635.
    45. Henry-Mowatt J, Dive C, Martinou J-C, James D: Role of mitochondrial membrane permeabilization in apoptosis and cancer. / Oncogene 2004, 23:2850-860. CrossRef
    46. Narendra DP, Jin SM, Tanaka A, Suen D-F, Gautier CA, Shen J, / et al.: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. / PLoS Biol 2010, 8:e1000298. CrossRef
    47. S?mann J, Hegermann J, Von Gromoff E, Eimer S, Baumeister R, Schmidt E: Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. / J Biol Chem 2009, 284:16482-6491. CrossRef
    48. White SR: Apoptosis and the airway epithelium. / J Allergy 2011, 2011:948406.
    49. Slebos D-J, Ryter SW, Van der Toorn M, Liu F, Guo F, Baty CJ, / et al.: Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death. / Am J Respir Cell Mol Biol 2007, 36:409-17. mb.2006-0214OC" target="_blank" title="It opens in new window">CrossRef
    50. Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I: Mitochondrial dysfunction increases allergic airway inflammation. / J Immunol 2009, 183:5379-387. mmunol.0900228" target="_blank" title="It opens in new window">CrossRef
    51. Lo Tam Loi AT, Hoonhorst SJM, Franciosi L, Bischoff R, Hoffmann RF, Heijink I, / et al.: Acute and chronic inflammatory responses induced by smoking in individuals susceptible and non-susceptible to development of COPD: from specific disease phenotyping towards novel therapy. Protocol of a cross-sectional study. / BMJ Open 2013,3(2):e002178. mjopen-2012-002178" target="_blank" title="It opens in new window">CrossRef
  • 作者单位:Roland F Hoffmann (1) (4)
    Sina Zarrintan (2) (3)
    Simone M Brandenburg (1)
    Arjan Kol (1)
    Harold G de Bruin (1) (4)
    Shabnam Jafari (3)
    Freark Dijk (3)
    Dharamdajal Kalicharan (3)
    Marco Kelders (6)
    Harry R Gosker (6)
    Nick HT ten Hacken (4) (5)
    Johannes J van der Want (3) (7)
    Antoon JM van Oosterhout (1) (4)
    Irene H Heijink (1) (4) (5)

    1. Department of Pathology and Medical Biology, Laboratory of Allergology and Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    4. GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    2. Department of General Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
    3. Department of Cell Biology, Groningen University, University Medical Center Groningen, Groningen, The Netherlands
    6. Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
    5. Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
    7. Department of Laboratory Medicine, Electron Microscopy and Histology, Children’s and Women’s Health, Norwegian University of Science and Technology, Trondheim, Norway
  • ISSN:1465-9921
文摘
Background Cigarette smoking is the major risk factor for COPD, leading to chronic airway inflammation. We hypothesized that cigarette smoke induces structural and functional changes of airway epithelial mitochondria, with important implications for lung inflammation and COPD pathogenesis. Methods We studied changes in mitochondrial morphology and in expression of markers for mitochondrial capacity, damage/biogenesis and fission/fusion in the human bronchial epithelial cell line BEAS-2B upon 6-months from ex-smoking COPD GOLD stage IV patients to age-matched smoking and never-smoking controls. Results We observed that long-term CSE exposure induces robust changes in mitochondrial structure, including fragmentation, branching and quantity of cristae. The majority of these changes were persistent upon CSE depletion. Furthermore, long-term CSE exposure significantly increased the expression of specific fission/fusion markers (Fis1, Mfn1, Mfn2, Drp1 and Opa1), oxidative phosphorylation (OXPHOS) proteins (Complex II, III and V), and oxidative stress (Mn-SOD) markers. These changes were accompanied by increased levels of the pro-inflammatory mediators IL-6, IL-8, and IL-1β. Importantly, COPD primary bronchial epithelial cells (PBECs) displayed similar changes in mitochondrial morphology as observed in long-term CSE-exposure BEAS-2B cells. Moreover, expression of specific OXPHOS proteins was higher in PBECs from COPD patients than control smokers, as was the expression of mitochondrial stress marker PINK1. Conclusion The observed mitochondrial changes in COPD epithelium are potentially the consequence of long-term exposure to cigarette smoke, leading to impaired mitochondrial function and may play a role in the pathogenesis of COPD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700