Comparison between hybrid functionals free of adjustable parameters and symmetry-adapted cluster–configuration interaction for electronically excited states of organic compounds: TD-PBE0-1/3 is better than expected
详细信息    查看全文
  • 作者:Mojtaba Alipour
  • 关键词:DFT ; WFT ; Parameter ; free functional ; SAC–CI ; Excitation energy
  • 刊名:Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta)
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:134
  • 期:5
  • 全文大小:465 KB
  • 参考文献:1.Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRef
    2.Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138CrossRef
    3.Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford
    4.Becke AD (1993) J Chem Phys 98:5648–5652CrossRef
    5.Becke AD (1993) J Chem Phys 98:1372–1377CrossRef
    6.Langreth DC, Perdew JP (1975) Solid State Commun 17:1425–1429CrossRef
    7.Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274–4298CrossRef
    8.Gunnarsson O, Lundqvist BI (1977) Phys Rev B 15:6006CrossRef
    9.Langreth DC, Perdew JP (1977) Phys Rev B 15:2884–2901CrossRef
    10.Harris J (1984) Phys Rev A 29:1648–1659CrossRef
    11.Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105:9982–9985CrossRef
    12.Adamo C, Barone V (1998) J Chem Phys 108:664–675CrossRef
    13.Cortona P (2012) J Chem Phys 136:086101CrossRef
    14.Guido CA, Brémond E, Adamo C, Cortona P (2013) J Chem Phys 138:021104CrossRef
    15.Alipour M (2015) RSC Adv 5:4737–4746CrossRef
    16.Alipour M (2013) Phys Chem Res 1:104–110
    17.Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000CrossRef
    18.Casida ME (1995) Recent advances in density functional methods. Part I. In: Chong DP (ed). World Scientific, Singapore
    19.Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053–2065CrossRef
    20.Nakatsuji H (1978) Chem Phys Lett 59:362–364CrossRef
    21.Nakatsuji H (1979) Chem Phys Lett 67:329–333CrossRef
    22.Wiberg KB, Hadad CM, Foresman JB, Chupka WA (1992) J Phys Chem 96:10756–10768CrossRef
    23.Wiberg KB, de Oliveira AE, Trucks G (2002) J Phys Chem A 106:4192–4196CrossRef
    24.Isegawa M, Truhlar DG (2013) J Chem Phys 138:134111–134113CrossRef
    25.Alipour M (2014) J Phys Chem A 118:1741–1747CrossRef
    26.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 revision A.02. Gaussian Inc, Wallingford
    27.McDiarmid R, Sablijć A (1988) J Chem Phys 89:6086–6095CrossRef
    28.John WMS III, Estler RC, Doering JP (1974) J Chem Phys 61:763–767CrossRef
    29.Doering JP, McDiarmid R (1981) J Chem Phys 75:2477–2478CrossRef
    30.Flicker M, Mosher OA, Kupperman A (1978) Chem Phys 30:307–314CrossRef
    31.McDiarmid R, Sabljić A (1991) J Phys Chem 95:6455–6462CrossRef
    32.Sabljić A, McDiarmid R, Gedanken A (1992) J Phys Chem 96:2442–2448CrossRef
    33.Price WC, Walsh AD (1941) Proc R Soc Lond Ser A 179:201–214CrossRef
    34.Serrano-Andres L, Merchan M, Nebot-Gil I, Lindh R, Roos BO (1993) J Chem Phys 98:3151–3162CrossRef
    35.Robin MB (1985) Higher excited states of polyatomic molecules. Academic, New York
    36.Derrick PJ, Ǻsbrink L, Edqvist O, Jonsson B-Ö, Lindholm E (1971) Int J Mass Spectrom Ion Phys 6:161–175CrossRef
    37.Flicker WM, Mosher OA, Kupperman A (1976) J Chem Phys 64:1315–1321CrossRef
    38.Trommsdorff HP (1972) J Chem Phys 56:5358–5371CrossRef
    39.Brint P, Connerade J-P, Tsekeris P, Bolovinos A, Baig A (1986) J Chem Soc Faraday Trans II 82:367–375CrossRef
    40.Goodman J, Brus LE (1978) J Chem Phys 69:1604–1612CrossRef
    41.Hackmeyer H, Whitten JL (1971) J Chem Phys 54:3739–3749CrossRef
    42.Wadt WR, Goddard WA, Dunning TH (1976) J Chem Phys 65:438–445CrossRef
    43.Bolovinos A, Tsekeris P, Philis J, Pantons E, Andritsopoulos G (1984) J Mol Spectrosc 103:240–256CrossRef
    44.Walker IC, Palmer MH, Hopkirk A (1989) Chem Phys 141:365–378CrossRef
    45.Bavia M, Bertinelli F, Taliani C, Zauli C (1976) Mol Phys 31:479–489CrossRef
    46.Bousquet D, Fukuda R, Maitarad P, Jacquemin D, Ciofini I, Adamo C, Ehara M (2013) J Chem Theory Comput 9:2368–2379CrossRef
    47.Bousquet D, Fukuda R, Jacquemin D, Ciofini I, Adamo C, Ehara M (2014) J Chem Theory Comput 10:3969–3979CrossRef
  • 作者单位:Mojtaba Alipour (1)

    1. Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Theoretical and Computational Chemistry
    Inorganic Chemistry
    Organic Chemistry
    Physical Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-2234
文摘
Developing and benchmarking methodological approaches able to accurately predict the electronically excited states are major challenges for theoretical chemists. In this work, we analyze the performances of the hybrid density functionals based on Perdew, Burke, and Ernzerhof (PBE) with a single non-fitted parameter for Hartree–Fock (HF) exchange and without invoking to any fitting process for predicting the valence and Rydberg excitation energies of organic compounds in the framework of time-dependent density functional theory (TD-DFT). As a wave function theory-based approach in the context of excite states calculations, symmetry-adapted cluster–configuration interaction (SAC–CI) method including single- and double-linked excitation operators has been considered. Our test calculations show that the SAC–CI gives the best performance for Rydberg excited states, while for valence excited states the PBE hybrid functional with parameter 1/3 for HF exchange (PBE0-1/3) outperforms other methods. Overall, of the several combinations of functionals and parameters, the TD-PBE0-1/3 is found to offer the best performance with respect to others and its validity compared to SAC–CI has also been verified by computing low-lying excited states of a few molecules. From the viewpoint of compromising between accuracy and computational cost, these findings reveal that how nonempirical hybrid functionals are economical to model electronic excitation energies of various systems and still much better achievements can be obtained in this respect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700