Excitation migration in fluctuating light-harvesting antenna systems
详细信息    查看全文
  • 作者:Jevgenij Chmeliov ; Gediminas Trinkunas ; Herbert van Amerongen…
  • 关键词:Light ; harvesting complex ; Photosystem II ; Thylakoids ; Diffusion ; Fluctuating antenna
  • 刊名:Photosynthesis Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:127
  • 期:1
  • 页码:49-60
  • 全文大小:1,703 KB
  • 参考文献:Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochim Biophys Acta, Bioenerg 1098(3):275鈥?35. doi:10.鈥?016/鈥婼0005-2728(09)91014-3 CrossRef
    Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R, Valkunas L (2001) Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80(5):2409鈥?421. doi:10.鈥?016/鈥婼0006-3495(01)76210-8 PubMedCentral CrossRef PubMed
    Belgio E, Johnson MP, Juri膰 S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime鈥揵oth the maximum and the nonphotochemically quenched. Biophys J 102(12):2761鈥?771. doi:10.鈥?016/鈥媕.鈥媌pj.鈥?012.鈥?5.鈥?04 PubMedCentral CrossRef PubMed
    Belgio E, Kapitonova E, Chmeliov J, Duffy CDP, Ungerer P, Valkunas L, Ruban AV (2014) Economic photoprotection in photosystem II that retains a complete light-harvesting system with slow energy traps. Nat Commun 5:4433. doi:10.鈥?038/鈥媙comms5433 CrossRef PubMed
    Bennett DIG, Amarnath K, Fleming GR (2013) A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J Am Chem Soc 135(24):9164鈥?173. doi:10.鈥?021/鈥媕a403685a CrossRef PubMed
    Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, OxfordCrossRef
    Broess K, Trinkunas G, van der Weij-de Wit CD, Dekker JP, van Hoek A, van Amerongen H (2006) Excitation energy transfer and charge separation in photosystem II membranes revisited. Biophys J 91(10):3776鈥?786. doi:10.鈥?529/鈥媌iophysj.鈥?06.鈥?85068 PubMedCentral CrossRef PubMed
    Broess K, Trinkunas G, van Hoek A, Croce R, van Amerongen H (2008) Determination of the excitation migration time in photosystem II鈥攃onsequences for the membrane organization and charge separation parameters. Biochim Biophys Acta, Bioenerg 1777(5):404鈥?09. doi:10.鈥?016/鈥媕.鈥媌babio.鈥?008.鈥?2.鈥?03 CrossRef
    Caffarri S, Kouril R, Kere茂che S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28(19):3052鈥?063. doi:10.鈥?038/鈥媏mboj.鈥?009.鈥?32 PubMedCentral CrossRef PubMed
    Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100(9):2094鈥?103. doi:10.鈥?016/鈥媕.鈥媌pj.鈥?011.鈥?3.鈥?49 PubMedCentral CrossRef PubMed
    Chmeliov J, Trinkunas G, van Amerongen H, Valkunas L (2014) Light harvesting in a fluctuating antenna. J Am Chem Soc 136(25):8963鈥?972. doi:10.鈥?021/鈥媕a5027858 CrossRef PubMed
    Croce R, van Amerongen H (2011) Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J Photochem Photobiol B 104(1鈥?):142鈥?53. doi:10.鈥?016/鈥媕.鈥媕photobiol.鈥?011.鈥?2.鈥?15 CrossRef PubMed
    Croce R, van Amerongen H (2013) Light-harvesting in photosystem I. Photosynth Res 116(2鈥?):153鈥?66. doi:10.鈥?007/鈥媠11120-013-9838-x PubMedCentral CrossRef PubMed
    Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nat Chem Biol 10(7):492鈥?01. doi:10.鈥?038/鈥媙chembio.鈥?555 CrossRef PubMed
    Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta, Bioenerg 1706(1鈥?):12鈥?9. doi:10.鈥?016/鈥媕.鈥媌babio.鈥?004.鈥?9.鈥?09 CrossRef
    Duffy CDP, Chmeliov J, Macernis M, Sulskus J, Valkunas L, Ruban AV (2013a) Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J Phys Chem B 117(38):10974鈥?0986. doi:10.鈥?021/鈥媕p3110997 CrossRef PubMed
    Duffy CDP, Valkunas L, Ruban AV (2013b) Light-harvesting processes in the dynamic photosynthetic antenna. Phys Chem Chem Phys 15(43):18752鈥?8770. doi:10.鈥?039/鈥媍3cp51878g CrossRef PubMed
    Franck F, Juneau P, Popovic R (2002) Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim Biophys Acta, Bioenerg 1556(2鈥?):239鈥?46. doi:10.鈥?016/鈥婼0005-2728(02)00366-3 CrossRef
    Ishizaki A, Fleming GR (2012) Quantum coherence in photosynthetic light harvesting. Annu Rev Condens Matter Phys 3(1):333鈥?61. doi:10.鈥?146/鈥媋nnurev-conmatphys-020911-125126 CrossRef
    Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23(4):1468鈥?479. doi:10.鈥?105/鈥媡pc.鈥?10.鈥?81646 PubMedCentral CrossRef PubMed
    Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 脜 resolution. Nature 411(6840):909鈥?17. doi:10.鈥?038/鈥?5082000 CrossRef PubMed
    Kr眉ger TPJ, Novoderezkhin VI, Ilioaia C, van Grondelle R (2010) Fluorescence spectral dynamics of single LHCIi trimers. Biophys J 98(12):3093鈥?101. doi:10.鈥?016/鈥媕.鈥媌pj.鈥?010.鈥?3.鈥?28 PubMedCentral CrossRef PubMed
    Kr眉ger TPJ, Ilioaia C, van Grondelle R (2011a) Fluorescence intermittency from the main plant light-harvesting complex: resolving shifts between intensity levels. J Phys Chem B 115(18):5071鈥?082. doi:10.鈥?021/鈥媕p201609c CrossRef PubMed
    Kr眉ger TPJ, Ilioaia C, Valkunas L, van Grondelle R (2011b) Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J Phys Chem B 115(18):5083鈥?095. doi:10.鈥?021/鈥媕p109833x CrossRef PubMed
    Lambrev PH, Schmitt FJ, Kussin S, Schoengen M, V谩rkonyi Z, Eichler HJ, Garab G, Renger G (2011) Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. Biochim Biophys Acta, Bioenerg 1807(9):1022鈥?031. doi:10.鈥?016/鈥媕.鈥媌babio.鈥?011.鈥?5.鈥?03 CrossRef
    Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 脜 resolution. Nature 428(6980):287鈥?92. doi:10.鈥?038/鈥媙ature02373 CrossRef PubMed
    Mohseni M, Omar Y, Engel GS, Plenio MB (eds) (2014) Quantum effects in biology. Cambridge University Press, Cambridge
    Moya I, Silvestri M, Vallon O, Cinque G, Bassi R (2001) Time-resolved fluorescence analysis of the photosystem II antenna proteins in detergent micelles and liposomes. Biochemistry 40(42):12552鈥?2561. doi:10.鈥?021/鈥媌i010342x CrossRef PubMed
    M眉h F, Madjet MEA, Renger T (2010) Structure-based identification of energy sinks in plant light-harvesting complex II. J Phys Chem B 114(42):13517鈥?3535. doi:10.鈥?021/鈥媕p106323e
    M眉h F, Madjet MEA, Renger T (2012) Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. Photosynth Res 111(1鈥?):87鈥?01. doi:10.鈥?007/鈥媠11120-011-9675-8 CrossRef PubMed
    M眉ller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. ChemPhysChem 11(6):1289鈥?296. doi:10.鈥?002/鈥媍phc.鈥?00900852 CrossRef PubMed
    Novoderezhkin V, Marin A, van Grondelle R (2011) Intra- and inter-monomeric transfers in the light harvesting LHCII complex: the Redfield-F枚rster picture. Phys Chem Chem Phys 13(38):17093鈥?7103. doi:10.鈥?039/鈥婥1CP21079C CrossRef PubMed
    Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R (2005) Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 脜 crystal structure. J Phys Chem 109(20):10493鈥?0504. doi:10.鈥?021/鈥媕p044082f CrossRef
    Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W (2011) Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol 18(3):309鈥?15. doi:10.鈥?038/鈥媙smb.鈥?008 CrossRef PubMed
    Raszewski G, Renger T (2008) Light harvesting in photosystem II core complexes is limited by the transfer to the trap: can the core complex turn into a photoprotective mode? J Am Chem Soc 130(13):4431鈥?446. doi:10.鈥?021/鈥媕a7099826 CrossRef PubMed
    Ruban A (2013) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley, Chichester. doi:10.鈥?002/鈥?781118447628
    Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta, Bioenerg 1817(1):167鈥?81. doi:10.鈥?016/鈥媕.鈥媌babio.鈥?011.鈥?4.鈥?07 CrossRef
    Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3(10):763鈥?74. doi:10.鈥?038/鈥媙chem.鈥?145 CrossRef PubMed
    Stillinger FH (1977) Axiomatic basis for spaces with noninteger dimension. J Math Phys 18(6):1224鈥?234. doi:10.鈥?063/鈥?.鈥?23395 CrossRef
    Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 脜. Nature 473(7345):55鈥?0. doi:10.鈥?038/鈥媙ature09913 CrossRef PubMed
    Valkunas L, Trinkunas G, Chmeliov J, Ruban AV (2009) Modeling of exciton quenching in photosystem II. Phys Chem Chem Phys 11(35):7576鈥?584. doi:10.鈥?039/鈥婤901848D CrossRef PubMed
    Valkunas L, Chmeliov J, Trinkunas G, Duffy CDP, van Grondelle R, Ruban AV (2011) Excitation migration, quenching, and regulation of photosynthetic light harvesting in photosystem II. J Phys Chem B 115(29):9252鈥?260. doi:10.鈥?021/鈥媕p2014385 CrossRef PubMed
    van Amerongen H, Croce R (2013) Light harvesting in photosystem II. Photosynth Res 116(2鈥?):251鈥?63. doi:10.鈥?007/鈥媠11120-013-9824-3 PubMedCentral CrossRef PubMed
    van Amerongen H, Valkunas L, van Grondelle R (2000) Photosynthetic excitons. World Scientific, SingaporeCrossRef
    van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8(7):793鈥?07. doi:10.鈥?039/鈥婤514032C CrossRef PubMed
    van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581(18):3528鈥?532. doi:10.鈥?016/鈥媕.鈥媐ebslet.鈥?007.鈥?6.鈥?70 CrossRef PubMed
    van Oort B, Amunts A, Borst JW, van Hoek A, Nelson N, van Amerongen H, Croce R (2008) Picosecond fluorescence of intact and dissolved PSI-LHCI crystals. Biophys J 95(12):5851鈥?861. doi:10.鈥?529/鈥媌iophysj.鈥?08.鈥?40467 PubMedCentral CrossRef PubMed
    van Oort B, Alberts M, de Bianchi S, Dall鈥橭sto L, Bassi R, Trinkunas G, Croce R, van Amerongen H (2010) Effect of antenna-depletion in photosystem II on excitation energy transfer in \(Arabidopsis thaliana\) . Biophys J 98(5):922鈥?31. doi: 10.鈥?016/鈥媕.鈥媌pj.鈥?009.鈥?1.鈥?12 PubMedCentral CrossRef PubMed
    van der Weij-de Wit CD, Dekker JP, van Grondelle R, van Stokkum IHM (2011) Charge separation is virtually irreversible in photosystem II core complexes with oxidized primary quinone acceptor. J Phys Chem A 115(16):3947鈥?956. doi:10.鈥?021/鈥媕p1083746 CrossRef PubMed
    Veerman J, McConnell MD, Vasil鈥檈v S, Mamedov F, Styring S, Bruce D (2007) Functional heterogeneity of photosystem II in domain specific regions of the thylakoid membrane of spinach (Spinacia Oleracea L.). Biochemistry 46(11):3443鈥?453. doi:10.鈥?021/鈥媌i061964r CrossRef PubMed
    Wientjes E, van Stokkum IHM, van Amerongen H, Croce R (2011) The role of the individual lhcas in photosystem I excitation energy trapping. Biophys J 101(3):745鈥?54. doi:10.鈥?016/鈥媕.鈥媌pj.鈥?011.鈥?6.鈥?45 PubMedCentral CrossRef PubMed
    Wientjes E, van Amerongen H, Croce R (2013a) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta, Bioenerg 1827(3):420鈥?26. doi:10.鈥?016/鈥媕.鈥媌babio.鈥?012.鈥?2.鈥?09 CrossRef
    Wientjes E, van Amerongen H, Croce R (2013b) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 117(38):11200鈥?1208. doi:10.鈥?021/鈥媕p401663w CrossRef PubMed
    Yang M, Damjanovi膰 A, Vaswani HM, Fleming GR (2003) Energy transfer in photosystem I of cyanobacteria \(Synechococcus elongatus\) : model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85(1):140鈥?58. doi: 10.鈥?016/鈥婼0006-3495(03)74461-0 PubMedCentral CrossRef PubMed
  • 作者单位:Jevgenij Chmeliov (1) (2)
    Gediminas Trinkunas (1) (2)
    Herbert van Amerongen (3)
    Leonas Valkunas (1) (2)

    1. Department of Theoretical Physics, Faculty of Physics, Vilnius University, Saul臈tekio Ave. 9, 10222, Vilnius, Lithuania
    2. Institute of Physics, Center for Physical Sciences and Technology, Gostauto 11, 01108, Vilnius, Lithuania
    3. Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700, Wageningen, The Netherlands
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5079
文摘
Complex multi-exponential fluorescence decay kinetics observed in various photosynthetic systems like photosystem II (PSII) have often been explained by the reversible quenching mechanism of the charge separation taking place in the reaction center (RC) of PSII. However, this description does not account for the intrinsic dynamic disorder of the light-harvesting proteins as well as their fluctuating dislocations within the antenna, which also facilitate the repair of RCs, state transitions, and the process of non-photochemical quenching. Since dynamic fluctuations result in varying connectivity between pigment鈥損rotein complexes, they can also lead to non-exponential excitation decay kinetics. Based on this presumption, we have recently proposed a simple conceptual model describing excitation diffusion in a continuous medium and accounting for possible variations of the excitation transfer pathways. In the current work, this model is further developed and then applied to describe fluorescence kinetics originating from very diverse antenna systems, ranging from PSII of various sizes to LHCII aggregates and even the entire thylakoid membrane. In all cases, complex multi-exponential fluorescence kinetics are perfectly reproduced on the entire relevant time scale without assuming any radical pair equilibration at the side of the excitation quencher, but using just a few parameters reflecting the mean excitation energy transfer rate as well as the overall average organization of the photosynthetic antenna. Keywords Light-harvesting complex Photosystem II Thylakoids Diffusion Fluctuating antenna

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700