Up-converted fluorescence from photosynthetic light-harvesting complexes linearly dependent on excitation intensity
详细信息    查看全文
  • 作者:Kristjan Leiger ; Arvi Freiberg
  • 关键词:Bacteriochlorophyll聽a ; Fluorescence ; Delayed fluorescence ; Two ; photon excitation ; Two ; step excitation ; Triplet鈥搕riplet annihilation
  • 刊名:Photosynthesis Research
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:127
  • 期:1
  • 页码:77-87
  • 全文大小:1,009 KB
  • 参考文献:Alden RG, Johnson E, Nagarajan V et al (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll鈥攑rotein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101:4667鈥?680. doi:10.鈥?021/鈥媕p970005r CrossRef
    Ashikhmin A, Makhneva Z, Moskalenko A (2014) The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis. Photosynth Res 119:291鈥?03. doi:10.鈥?007/鈥媠11120-013-9947-6 CrossRef PubMed
    Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156鈥?59. doi:10.鈥?103/鈥婸hysRevLett.鈥?4.鈥?56 CrossRef
    Beekman LMP, Frese RN, Fowler GJS et al (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 2. LH2 complexes: influence of the protein environment. J Phys Chem B 101:7293鈥?301. doi:10.鈥?021/鈥媕p963447w CrossRef
    Bittl R, Schlodder E, Geisenheimer I et al (2001) Transient EPR and absorption studies of carotenoid triplet formation in purple bacterial antenna complexes. J Phys Chem B 105:5525鈥?535. doi:10.鈥?021/鈥媕p0033014 CrossRef
    Bopp MA, Jia Y, Li L et al (1997) Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc Natl Acad Sci 94:10630鈥?0635. doi:10.鈥?073/鈥媝nas.鈥?4.鈥?0.鈥?0630 PubMedCentral CrossRef PubMed
    Clayton RK, Clayton BJ (1981) B850 pigment-protein complex of Rhodopseudomonas sphaeroides: extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll. Proc Natl Acad Sci 78:5583鈥?587PubMedCentral CrossRef PubMed
    Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257鈥?64. doi:10.鈥?111/鈥媕.鈥?751-1097.鈥?996.鈥媡b03022.鈥媥 CrossRef PubMed
    Freiberg A, R盲tsep M, Timpmann K et al (2003) Self-trapped excitons in LH2 antenna complexes between 5 K and ambient temperature. J Phys Chem B 107:11510鈥?1519. doi:10.鈥?021/鈥媕p0344848 CrossRef
    Freiberg A, R盲tsep M, Timpmann K, Trinkunas G (2009) Excitonic polarons in quasi-one-dimensional LH1 and LH2 bacteriochlorophyll a antenna aggregates from photosynthetic bacteria: a wavelength-dependent selective spectroscopy study. Chem Phys 357:102鈥?12. doi:10.鈥?016/鈥媕.鈥媍hemphys.鈥?008.鈥?0.鈥?43 CrossRef
    Freiberg A, Timpmann K, Trinkunas G (2010) Spectral fine-tuning in excitonically coupled cyclic photosynthetic antennas. Chem Phys Lett 500:111鈥?15. doi:10.鈥?016/鈥媕.鈥媍plett.鈥?010.鈥?9.鈥?84 CrossRef
    Freiberg A, R盲tsep M, Timpmann K (2012) A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes. Biochim Biophys Acta BBA鈥擝ioenerg 1817:1471鈥?482. doi:10.鈥?016/鈥媕.鈥媌babio.鈥?011.鈥?1.鈥?19 CrossRef
    Freiberg A, Pajusalu M, R盲tsep M (2013) Excitons in intact cells of photosynthetic bacteria. J Phys Chem B 117:11007鈥?1014. doi:10.鈥?021/鈥媕p3098523 CrossRef PubMed
    Hartzler DA, Niedzwiedzki DM, Bryant DA et al (2014) Triplet excited state energies and phosphorescence spectra of (bacterio) chlorophylls. J Phys Chem B 118:7221鈥?232. doi:10.鈥?021/鈥媕p500539w CrossRef PubMed
    Koyama Y, Kakitani Y, Limantara L, Fujii R (2006) Effects of axial coordination, electronic excitation and oxidation on bond orders in the bacteriochlorin macrocycle, and generation of radical cation on photo-excitation of in vitro and in vivo bacteriochlorophyll a aggregates: resonance Raman studies. In: Grimm B, Porra RJ, R眉diger W, Scheer H (eds) Chlorophylls Bacteriochlorophylls. Springer, Netherlands, pp 323鈥?35CrossRef
    Krasnovski AAJ (2014) Phosphorescence of triplet chlorophylls. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science. World Scientific Publishing, Hackensack, pp 77鈥?66
    Krikunova M, Kummrow A, Voigt B et al (2002) Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically 鈥渄ark鈥? S 1 state of carotenoids. FEBS Lett 528:227鈥?29. doi:10.鈥?016/鈥婼0014-5793(02)03315-X CrossRef PubMed
    Krueger BP, Yom J, Walla PJ, Fleming GR (1999) Observation of the S 1 state of spheroidene in LH2 by two-photon fluorescence excitation. Chem Phys Lett 310:57鈥?4. doi:10.鈥?016/鈥婼0009-2614(99)00729-0 CrossRef
    Kunz R, Timpmann K, Southall J et al (2013) Fluorescence-excitation and emission spectra from LH2 antenna complexes of Rhodopseudomonas acidophila as a function of the sample preparation conditions. J Phys Chem B 117:12020鈥?2029. doi:10.鈥?021/鈥媕p4073697 CrossRef PubMed
    Leiger K, Reisberg L, Freiberg A (2013) Fluorescence micro-spectroscopy study of individual photosynthetic membrane vesicles and light-harvesting complexes. J Phys Chem B 117:9315鈥?326. doi:10.鈥?021/鈥媕p4014509 CrossRef PubMed
    Leupold D, Teuchner K, Ehlert J et al (2002) Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: a new approach to detect strong excitonic chlorophyll a/b coupling. Biophys J 82:1580鈥?585. doi:10.鈥?016/鈥婼0006-3495(02)75509-4 PubMedCentral CrossRef PubMed
    Leupold D, Teuchner K, Ehlert J et al (2006) Stepwise two-photon excited fluorescence from higher excited states of chlorophylls in photosynthetic antenna complexes. J Biol Chem 281:25381鈥?5387. doi:10.鈥?074/鈥媕bc.鈥婱600080200 CrossRef PubMed
    Linnanto J, Freiberg A, Korppi-Tommola J (2011) Quantum chemical simulations of excited-state absorption spectra of photosynthetic bacterial reaction center and antenna complexes. J Phys Chem B 115:5536鈥?544. doi:10.鈥?021/鈥媕p111340w CrossRef PubMed
    Liu Y, Berns MW, Konig K et al (1995a) Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. Opt Lett 20:2246鈥?248. doi:10.鈥?364/鈥婳L.鈥?0.鈥?02246 CrossRef PubMed
    Liu Y, Cheng DK, Sonek GJ et al (1995b) Evidence for localized cell heating induced by infrared optical tweezers. Biophys J 68:2137鈥?144. doi:10.鈥?016/鈥婼0006-3495(95)80396-6 PubMedCentral CrossRef PubMed
    Liu Y, Sonek GJ, Berns MW, Tromberg BJ (1996) Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophys J 71:2158鈥?167. doi:10.鈥?016/鈥婼0006-3495(96)79417-1 PubMedCentral CrossRef PubMed
    Lower SK, El-Sayed MA (1966) The triplet state and molecular electronic processes in organic molecules. Chem Rev 66:199鈥?41. doi:10.鈥?021/鈥媍r60240a004 CrossRef
    Monger TG, Cogdell RJ, Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta BBA鈥擝ioenerg 449:136鈥?53. doi:10.鈥?016/鈥?005-2728(76)90013-X CrossRef
    Niedzwiedzki DM, Blankenship RE (2010) Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth Res 106:227鈥?38. doi:10.鈥?007/鈥媠11120-010-9598-9 CrossRef PubMed
    Perkins TT (2009) Optical traps for single molecule biophysics: a primer. Laser Photonics Rev 3:203鈥?20. doi:10.鈥?002/鈥媗por.鈥?00810014 CrossRef
    Pflock TJ, Oellerich S, Southall J et al (2011) The electronically excited states of LH2 complexes from Rhodopseudomonas acidophila strain 10050 studied by time-resolved spectroscopy and dynamic Monte Carlo simulations. I. Isolated, non-interacting LH2 complexes. J Phys Chem B 115:8813鈥?820. doi:10.鈥?021/鈥媕p202353c CrossRef PubMed
    Pil谩t Z, Je啪ek J, 艩er媒 M et al (2013) Optical trapping of microalgae at 735鈥?064 nm: photodamage assessment. J Photochem Photobiol B 121:27鈥?1. doi:10.鈥?016/鈥媕.鈥媕photobiol.鈥?013.鈥?2.鈥?06 CrossRef PubMed
    Pol铆vka T, Sundstr枚m V (2004) Ultrafast dynamics of carotenoid excited states鈥攆rom solution to natural and artificial systems. Chem Rev 104:2021鈥?072. doi:10.鈥?021/鈥媍r020674n CrossRef PubMed
    R盲tsep M, Wu H-M, Hayes JM et al (1998) Stark hole-burning studies of three photosynthetic complexes. J Phys Chem B 102:4035鈥?044. doi:10.鈥?021/鈥媕p980421r CrossRef
    R盲tsep M, Cai Z-L, Reimers JR, Freiberg A (2011) Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Q y fluorescence and absorption spectra of bacteriochlorophyll a. J Chem Phys 134:024506. doi:10.鈥?063/鈥?.鈥?518685 CrossRef PubMed
    R盲tsep M, Pajusalu M, Linnanto JM, Freiberg A (2014) Subtle spectral effects accompanying the assembly of bacteriochlorophylls into cyclic light harvesting complexes revealed by high-resolution fluorescence spectroscopy. J Chem Phys 141:155102. doi:10.鈥?063/鈥?.鈥?897637 CrossRef PubMed
    Rondonuwu FS, Taguchi T, Fujii R et al (2004) The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy. Chem Phys Lett 384:364鈥?71. doi:10.鈥?016/鈥媕.鈥媍plett.鈥?003.鈥?2.鈥?24 CrossRef
    Sauer K, Cogdell RJ, Prince SM et al (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64:564鈥?76. doi:10.鈥?111/鈥媕.鈥?751-1097.鈥?996.鈥媡b03106.鈥媥 CrossRef
    Schneckenburger H, Hendinger A, Sailer R et al (2000) Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser. J Biomed Opt 5:40鈥?4. doi:10.鈥?117/鈥?.鈥?29966 CrossRef PubMed
    Scholes GD, Gould IR, Cogdell RJ, Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila. J Phys Chem B 103:2543鈥?553. doi:10.鈥?021/鈥媕p9839753 CrossRef
    艦ener M, Hsin J, Trabuco LG et al (2009) Structural model and excitonic properties of the dimeric RC鈥揕H1鈥揚ufX complex from Rhodobacter sphaeroides. Chem Phys 357:188鈥?97. doi:10.鈥?016/鈥媕.鈥媍hemphys.鈥?009.鈥?1.鈥?03 PubMedCentral CrossRef PubMed
    Siebert CA, Qian P, Fotiadis D et al (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: the role of PufX. EMBO J 23:690鈥?00. doi:10.鈥?038/鈥媠j.鈥媏mboj.鈥?600092 PubMedCentral CrossRef PubMed
    Stepanenko I, Kompanetz V, Makhneva Z et al (2009) Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria. J Phys Chem B 113:11720鈥?1723. doi:10.鈥?021/鈥媕p906565m CrossRef PubMed
    Stepanenko IA, Kompanets VO, Chekalin SV et al (2010) Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200鈥?500 nm) and one-photon (600鈥?50 nm) excitation by laser femtosecond pulses. Proc SPIE 7994:79941C. doi:10.鈥?117/鈥?2.鈥?82498 CrossRef
    Stepanenko I, Kompanetz V, Makhneva Z et al (2012) Transient absorption study of two-photon excitation mechanism in the LH2 complex from purple bacterium Rhodobacter sphaeroides. J Phys Chem B 116:2886鈥?890. doi:10.鈥?021/鈥媕p2033214 CrossRef PubMed
    Sternlicht H, Nieman GC, Robinson GW (1963) Triplet鈥搕riplet annihilation and delayed fluorescence in molecular aggregates. J Chem Phys 38:1326鈥?335. doi:10.鈥?063/鈥?.鈥?733853 CrossRef
    Takiff L, Boxer SG (1988) Phosphorescence spectra of bacteriochlorophylls. J Am Chem Soc 110:4425鈥?426. doi:10.鈥?021/鈥媕a00221a059 CrossRef
    Timpmann K, Ellervee A, Pullerits T et al (2001) Short-range exciton couplings in LH2 photosynthetic antenna proteins studied by high hydrostatic pressure absorption spectroscopy. J Phys Chem B 105:8436鈥?444. doi:10.鈥?021/鈥媕p003496f CrossRef
    Walz T, Jamieson SJ, Bowers CM et al (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 脜, LH1 and RC-LH1 at 25 脜. J Mol Biol 282:833鈥?45. doi:10.鈥?006/鈥媕mbi.鈥?998.鈥?050 CrossRef PubMed
  • 作者单位:Kristjan Leiger (1)
    Arvi Freiberg (1) (2)

    1. Institute of Physics, University of Tartu, Ravila 14c, 51011, Tartu, Estonia
    2. Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51014, Tartu, Estonia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5079
文摘
Weak up-converted fluorescence related to bacteriochlorophyll a was recorded from various detergent-isolated and membrane-embedded light-harvesting pigment鈥損rotein complexes as well as from the functional membranes of photosynthetic purple bacteria under continuous-wave infrared laser excitation at 1064 nm, far outside the optically allowed singlet absorption bands of the chromophore. The fluorescence increases linearly with the excitation power, distinguishing it from the previously observed two-photon excited fluorescence upon femtosecond pulse excitation. Possible mechanisms of this excitation are discussed. Keywords Bacteriochlorophyll a Fluorescence Delayed fluorescence Two-photon excitation Two-step excitation Triplet鈥搕riplet annihilation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700