Energy dissipation pathways in Photosystem 2 of the diatom, Phaeodactylum tricornutum, under high-light conditions
详细信息    查看全文
  • 作者:Fedor I. Kuzminov ; Maxim Y. Gorbunov
  • 关键词:Non ; photochemical quenching ; Diatoms ; Photosystem 2 ; Reaction center ; Light ; harvesting complex ; Photosynthetic energy transfer
  • 刊名:Photosynthesis Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:127
  • 期:2
  • 页码:219-235
  • 全文大小:1,082 KB
  • 参考文献:Bailleul B, Rogato A, De Martino A et al (2010) An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci 107:18214–18219PubMed PubMedCentral CrossRef
    Brunet C, Lavaud J (2010) Can the xanthophyll cycle help extract the essence of the microalgal functional response to a variable light environment? J Plankton Res 32:1609–1617. doi:10.​1093/​plankt/​fbq104 CrossRef
    Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103. doi:10.​1016/​j.​bpj.​2011.​03.​049 PubMed PubMedCentral CrossRef
    Chukhutsina VU, Büchel C, Amerongen HV (2013) Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions. Biochim Biophys Acta 1827:10–18. doi:10.​1016/​j.​bbabio.​2012.​09.​015 PubMed CrossRef
    Chukhutsina VU, Büchel C, van Amerongen H (2014) UNCORRECTED PROOF. Biochimica et Biophysica Acta. doi:10.​1016/​j.​bbabio.​2014.​02.​021 PubMed
    Eisenstadt D, Ohad I, Keren N, Kaplan A (2008) Changes in the photosynthetic reaction centre II in the diatom Phaeodactylum tricornutumresult in non-photochemical fluorescence quenching. Environ Microbiol 10:1997–2007. doi:10.​1111/​j.​1462-2920.​2008.​01616.​x PubMed CrossRef
    El Bissati K, Kirilovsky D, Delphin E et al (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochimica et Biophysica Acta 1457:229–242PubMed CrossRef
    Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Optics Communications 134:371–378. doi:10.​1016/​S0030-4018(96)00384-7 CrossRef
    Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27:8–14. doi:10.​1111/​j.​0022-3646.​1991.​00008.​x CrossRef
    Falkowski PG, Raven JA (2007) Aquat Photosyn. doi:10.​1371/​journal.​pone.​0030167
    Falkowski PG, Green R, Kolber ZS (1994) Light utilization and photoinhibition of photosynthesis in marine phytoplankton. In: Baker NR, Bowyer JR (eds) Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. pp 409–434
    Genty B, Harbinson J, Briantais J-M, Baker NR (1990) The relationship between non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosyn Res 25:249–257PubMed CrossRef
    Gorbunov MY, Falkowski PG (2005) Fluorescence Induction and Relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In: Fundamental Photosynthesis (ed) van der Est A, Bruce D. International Society of Photosynthesis, Aspects to Global Perspectives, pp 1029–1031
    Gorbunov MY, Kuzminov FI, Fadeev VV et al (2011) A kinetic model of non-photochemical quenching in cyanobacteria. Biochimica et Biophysica Acta 1807:1591–1599. doi:10.​1016/​j.​bbabio.​2011.​08.​009 PubMed CrossRef
    Goss R, Jakob T (2010) Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosyn Res 106:103–122. doi:10.​1007/​s11120-010-9536-x PubMed CrossRef
    Goss R, Lepetit B (2015) Journal of Plant Physiology. J Plant Physiol 172:13–32. doi:10.​1016/​j.​jplph.​2014.​03.​004 PubMed CrossRef
    Gundermann K, Büchel C (2012) Factors determining the fluorescence yield of fucoxanthin-chlorophyll complexes (FCP) involved in non-photochemical quenching in diatoms. Biochim Biophys Acta 1817:1044–1052. doi:10.​1016/​j.​bbabio.​2012.​03.​008 PubMed CrossRef
    Holzwarth AR, Müller MG, Reus M et al (2006) Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. Proc Natl Acad Sci 103:6895–6900PubMed PubMedCentral CrossRef
    Horton P, Ruban AV, Walters RG (1996) REGULATION OF LIGHT HARVESTING IN GREEN PLANTS. Annu Rev Plant Physiol Plant Mol Biol 47:655–684. doi:10.​1146/​annurev.​arplant.​47.​1.​655 PubMed CrossRef
    Ivanov AG, Hurry V, Sane PV et al (2008a) Reaction centre quenching of excess light energy and photoprotection of photosystem II. Journal of Plant Biology 51:85–96. doi:10.​1007/​BF03030716 CrossRef
    Ivanov AG, Sane PV, Hurry V et al (2008b) Photosystem II reaction centre quenching: mechanisms and physiological role. Photosyn Res 98:565–574. doi:10.​1007/​s11120-008-9365-3 PubMed CrossRef
    Jeffery SW, Leroi JM (1997) Simple procedures for growing SCOR reference microalgal cultures. In: Jeffery SW, Mantoura RFC, Wright SW (eds) Plankton Pigments in Oceanography; Monographs on Oceanographic Methodology. … oceanographic methods. UNESCO, pp 181–205
    Joliot A, Joliot P (1964) Etude cinetique de la reaction photochimique liberant loxygene au cours de la photosynthese. C R Acad Sci Paris 258:4622–4625PubMed
    Kirilovsky D, Kerfeld CA (2013) The Orange Carotenoid Protein: a blue-green light photoactive protein. Photochem Photobiol Sci 12:1135–1143. doi:10.​1039/​c3pp25406b PubMed CrossRef
    Kolber ZS, Prásil O, Falkowski PG (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta 1367:88–106PubMed CrossRef
    Krieger-Liszkay A, Fufezan C, Trebst A (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosyn Res 98:551–564. doi:10.​1007/​s11120-008-9349-3 PubMed CrossRef
    Ku HH (1966) Notes on the use of propagation of error formulas. Journal of Research of the National Bureau of Standards, Section C: Engineering and Instrumentation 70C:263. doi:10.​6028/​jres.​070c.​025
    Lakowicz JR (2007) Principles of Fluorescence Spectroscopy, Third Edition. 1–960
    Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochim Biophys Acta 1817:760–769. doi:10.​1016/​j.​bbabio.​2012.​02.​002 PubMed CrossRef
    Lavaud J, Rousseau B, Etienne A-L (2002) In diatoms, a transthylakoid proton gradient alone is not sufficient to induce a non-photochemical fluorescence quenching. FEBS Lett 523:163–166PubMed CrossRef
    Lavaud J, Materna AC, Sturm S et al (2012) Silencing of the Violaxanthin De-Epoxidase Gene in the Diatom Phaeodactylum tricornutum Reduces Diatoxanthin Synthesis and Non-Photochemical Quenching. PLoS ONE 7:e36806. doi:10.​1371/​journal.​pone.​0036806.​t003 PubMed PubMedCentral CrossRef
    Lee HY, Hong YN, Chow WS (2001) Photoinactivation of photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves. Planta 212:332–342PubMed CrossRef
    Lepetit B, Sturm S, Rogato A et al (2013) High light acclimation in the secondary plastids containing diatom phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865. doi:10.​1104/​pp.​112.​207811 PubMed PubMedCentral CrossRef
    Li XP, Björkman O, Shih C et al (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395. doi:10.​1038/​35000131 PubMed CrossRef
    Matsubara S, Chow WS (2004) Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. Proc Natl Acad Sci 101:18234–18239. doi:10.​1073/​pnas.​0403857102 PubMed PubMedCentral CrossRef
    Miloslavina Y, Grouneva I, Lambrev PH et al (2009) Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Biochimica et Biophysica Acta 1787:1189–1197. doi:10.​1016/​j.​bbabio.​2009.​05.​012 PubMed CrossRef
    Moya I, Hodges M, Briantais JM, Hervo G (1986) Evidence That the Variable Chlorophyll Fluorescence in Chlamydomonas-Reinhardtii Is Not Recombination Luminescence. Photosyn Res 10:319–325. doi:10.​1007/​BF00118297 PubMed CrossRef
    Müller P, Li X-P, Niyogi KK (2001) Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol 125:1558–1566. doi:10.​1104/​pp.​125.​4.​1558 PubMed PubMedCentral CrossRef
    Nelson DM, Tréguer P, Brzezinski MA et al (1995) Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9:359–372. doi:10.​1029/​95gb01070 CrossRef
    Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314. doi:10.​1016/​j.​pbi.​2013.​03.​011 PubMed CrossRef
    Olaizola M, La Roche J, Kolber Z, Falkowski PG (1994) Non-photochemical fluorescence quenching and the diadinoxanthin cycle in a marine diatom. Photosyn Res 41:357–370. doi:10.​1007/​BF00019413 PubMed CrossRef
    Peers G, Truong TB, Ostendorf E et al (2009) An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521. doi:10.​1038/​nature08587 PubMed CrossRef
    Rehman AU, Cser K, Sass L, Vass I (2013) Characterization of singlet oxygen production and its involvement in photodamage of Photosystem II in the cyanobacterium Synechocystis PCC 6803 by histidine-mediated chemical trapping. Biochim Biophys Acta 1827:689–698. doi:10.​1016/​j.​bbabio.​2013.​02.​016 PubMed CrossRef
    Roelofs TA, Lee CH, Holzwarth AR (1992) Global Target Analysis of Picosecond Chlorophyll Fluorescence Kinetics From Pea-Chloroplasts - a New Approach to the Characterization of the Primary Processes in Photosystem-Ii Alpha-Units and Beta-Units. Biophys J 61:1147–1163PubMed PubMedCentral CrossRef
    Ruban AV, Lavaud J, Rousseau B et al (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosyn Res 82:165–175. doi:10.​1007/​s11120-004-1456-1 PubMed CrossRef
    Schatz GH, Brock H, Holzwarth AR (1987) Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc Natl Acad Sci 84:8414–8418PubMed PubMedCentral CrossRef
    Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54:397–405PubMed PubMedCentral CrossRef
    Schweitzer RH, Brudvig GW (1997) Fluorescence quenching by chlorophyll cations in photosystem II. Biochemistry 36:11351–11359. doi:10.​1021/​bi9709203 PubMed CrossRef
    van Oort B, Amunts A, Borst JW et al (2008) Picosecond Fluorescence of Intact and Dissolved PSI-LHCI Crystals. Biophys J 95:5851–5861. doi:10.​1529/​biophysj.​108.​140467 PubMed PubMedCentral CrossRef
    Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14:200–205. doi:10.​1016/​j.​tplants.​2009.​01.​009 PubMed CrossRef
    Wagner B, Goss R, Richter M et al (1996) Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids different localization of zeaxanthin dependent and independent quenching mechanisms. J Photochem Photobiol, B 36:339–350. doi:10.​1016/​S1011-1344(96)07391-5 CrossRef
    Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem. doi:10.​1351/​pac197951030639
  • 作者单位:Fedor I. Kuzminov (1) (2)
    Maxim Y. Gorbunov (1)

    1. Environmental Biophysics and Molecular Biology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
    2. International Laser Center, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-5079
文摘
To prevent photooxidative damage under supraoptimal light, photosynthetic organisms evolved mechanisms to thermally dissipate excess absorbed energy, known as non-photochemical quenching (NPQ). Here we quantify NPQ-induced alterations in light-harvesting processes and photochemical reactions in Photosystem 2 (PS2) in the pennate diatom Phaeodactylum tricornutum. Using a combination of picosecond lifetime analysis and variable fluorescence technique, we examined the dynamics of NPQ activation upon transition from dark to high light. Our analysis revealed that NPQ activation starts with a 2–3-fold increase in the rate constant of non-radiative charge recombination in the reaction center (RC); however, this increase is compensated with a proportional increase in the rate constant of back reactions. The resulting alterations in photochemical processes in PS2 RC do not contribute directly to quenching of antenna excitons by the RC, but favor non-radiative dissipation pathways within the RC, reducing the yields of spin conversion of the RC chlorophyll to the triplet state. The NPQ-induced changes in the RC are followed by a gradual ~ 2.5-fold increase in the yields of thermal dissipation in light-harvesting complexes. Our data suggest that thermal dissipation in light-harvesting complexes is the major sink for NPQ; RCs are not directly involved in the NPQ process, but could contribute to photoprotection via reduction in the probability of 3Chl formation. Keywords Non-photochemical quenching Diatoms Photosystem 2 Reaction center Light-harvesting complex Photosynthetic energy transfer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700