Levels of regulatory T cells CD69+NKG2D+IL-10+ are increased in patients with autoimmune thyroid disorders
详细信息    查看全文
  • 作者:Ana Rodríguez-Muñoz ; Marlen Vitales-Noyola ; Ana Ramos-Levi…
  • 关键词:Treg cells ; CD69 ; NKG2D ; IL ; 10 ; Hashimoto thyroiditis ; Graves’ disease
  • 刊名:Endocrine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:3
  • 页码:478-489
  • 全文大小:3,420 KB
  • 参考文献:1.A.P. Weetman, Autoimmune thyroid disease. Autoimmunity 37(4), 337–340 (2004). doi:10.​1080/​0891693041000170​5394 CrossRef PubMed
    2.G. Stassi, R. De Maria, Autoimmune thyroid disease: new models of cell death in autoimmunity. Nat. Rev. Immunol. 2(3), 195–204 (2002). doi:10.​1038/​nri750 CrossRef PubMed
    3.S.Z. Josefowicz, L.F. Lu, A.Y. Rudensky, Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012). doi:10.​1146/​annurev.​immunol.​25.​022106.​141623 CrossRef PubMed
    4.A. Schmidt, N. Oberle, P.H. Krammer, Molecular mechanisms of treg-mediated T cell suppression. Front. Immunol. 3, 51 (2012). doi:10.​3389/​fimmu.​2012.​00051 PubMedCentral PubMed
    5.E.M. Shevach, A.M. Thornton, tTregs, pTregs, and iTregs: similarities and differences. Immunol. Rev. 259(1), 88–102 (2014). doi:10.​1111/​imr.​12160 PubMedCentral CrossRef PubMed
    6.S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin, T. Yamaguchi, Regulatory T cells: how do they suppress immune responses? Int. Immunol. 21(10), 1105–1111 (2009). doi:10.​1093/​intimm/​dxp095 CrossRef PubMed
    7.S. Sakaguchi, K. Wing, M. Miyara, Regulatory T cells - a brief history and perspective. Eur. J. Immunol. 37(Suppl 1), S116–S123 (2007). doi:10.​1002/​eji.​200737593 CrossRef PubMed
    8.L.W. Collison, V. Chaturvedi, A.L. Henderson, P.R. Giacomin, C. Guy, J. Bankoti, D. Finkelstein, K. Forbes, C.J. Workman, S.A. Brown, J.E. Rehg, M.L. Jones, H.T. Ni, D. Artis, M.J. Turk, D.A. Vignali, IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 11(12), 1093–1101 (2010). doi:10.​1038/​ni.​1952 PubMedCentral CrossRef PubMed
    9.M. Battaglia, S. Gregori, R. Bacchetta, M.G. Roncarolo, Tr1 cells: from discovery to their clinical application. Semin. Immunol. 18(2), 120–127 (2006). doi:10.​1016/​j.​smim.​2006.​01.​007 CrossRef PubMed
    10.R.K. Dinesh, B.J. Skaggs, A. La Cava, B.H. Hahn, R.P. Singh, CD8 + Tregs in lupus, autoimmunity, and beyond. Autoimmun. Rev. 9(8), 560–568 (2010). doi:10.​1016/​j.​autrev.​2010.​03.​006 PubMedCentral CrossRef PubMed
    11.R.A. Peterson, Regulatory T-cells: diverse phenotypes integral to immune homeostasis and suppression. Toxicol. Pathol. 40(2), 186–204 (2012). doi:10.​1177/​0192623311430693​ CrossRef PubMed
    12.Y. Han, Q. Guo, M. Zhang, Z. Chen, X. Cao, CD69 + CD4 + CD25- T cells, a new subset of regulatory T cells, suppress T cell proliferation through membrane-bound TGF-beta 1. J. Immunol. 182(1), 111–120 (2009). doi:10.​4049/​jimmunol.​182.​1.​111 CrossRef PubMed
    13.J. Zhu, A. Feng, J. Sun, Z. Jiang, G. Zhang, K. Wang, S. Hu, X. Qu, Increased CD4(+) CD69(+) CD25(-) T cells in patients with hepatocellular carcinoma are associated with tumor progression. J. Gastroenterol. Hepatol. 26(10), 1519–1526 (2011). doi:10.​1111/​j.​1440-1746.​2011.​06765.​x CrossRef PubMed
    14.S. Bauer, V. Groh, J. Wu, A. Steinle, J.H. Phillips, L.L. Lanier, T. Spies, Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285(5428), 727–729 (1999). doi:10.​1126/​science.​285.​5428.​727 CrossRef PubMed
    15.Z. Dai, C.J. Turtle, G.C. Booth, S.R. Riddell, T.A. Gooley, A.M. Stevens, T. Spies, V. Groh, Normally occurring NKG2D + CD4 + T cells are immunosuppressive and inversely correlated with disease activity in juvenile-onset lupus. J. Exp. Med. 206(4), 793–805 (2009). doi:10.​1084/​jem.​20081648 PubMedCentral CrossRef PubMed
    16.M. Vitales-Noyola, L. Doníz-Padilla, C. Álvarez-Quiroga, A. Monsiváis-Urenda, H. Portillo-Salazar, R. González-Amaro, Quantitative and functional analysis of CD69 + NKG2D + T regulatory cells in healthy subjects. Hum. Immunol. (2015). doi:10.​1016/​j.​humimm.​2015.​06.​003
    17.S. Bhattacharyya, S. Ghosh, P.L. Jhonson, S.K. Bhattacharya, S. Majumdar, Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events. Infect. Immun. 69(3), 1499–1507 (2001). doi:10.​1128/​IAI.​69.​3.​1499-1507.​2001 PubMedCentral CrossRef PubMed
    18.K. Asadullah, R. Sabat, M. Friedrich, H.D. Volk, W. Sterry, Interleukin-10: an important immunoregulatory cytokine with major impact on psoriasis. Curr. Drug Targets Inflamm. Allergy 3(2), 185–192 (2004). doi:10.​2174/​1568010043343886​ CrossRef PubMed
    19.E. Niesen, J. Schmidt, T. Flecken, R. Thimme, Suppressive effect of interleukin 10 on priming of naive hepatitis C virus-specific CD8 + T cells. J. Infect. Dis. 211(5), 821–826 (2015). doi:10.​1093/​infdis/​jiu541 CrossRef PubMed
    20.R. de Waal Malefyt, J. Abrams, B. Bennett, C.G. Figdor, J.E. de Vries, Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174(5), 1209-1220 (1991). doi:10.​1084/​jem.​174.​5.​1209
    21.Yssel, H., De Waal Malefyt, R., Roncarolo, M.G., Abrams, J.S., Lahesmaa, R., Spits, H., de Vries, J.E.: IL-10 is produced by subsets of human CD4 + T cell clones and peripheral blood T cells. J Immunol 149(7), 2378-2384 (1992)
    22.G. Del Prete, M. De Carli, F. Almerigogna, M.G. Giudizi, R. Biagiotti, S. Romagnani, Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. J Immunol 150(2), 353–360 (1993)PubMed
    23.D.F. Fiorentino, M.W. Bond, T.R. Mosmann, Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170(6), 2081–2095 (1989). doi:10.​1084/​jem.​170.​6.​2081 CrossRef PubMed
    24.P.L. Vieira, J.R. Christensen, S. Minaee, E.J. O’Neill, F.J. Barrat, A. Boonstra, T. Barthlott, B. Stockinger, D.C. Wraith, A. O’Garra, IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4 + CD25 + regulatory T cells. J. Immunol. 172(10), 5986–5993 (2004). doi:10.​4049/​jimmunol.​172.​10.​5986 CrossRef PubMed
    25.M. Asano, M. Toda, N. Sakaguchi, S. Sakaguchi, Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184(2), 387–396 (1996). doi:10.​1084/​jem.​184.​2.​387 CrossRef PubMed
    26.A. Kojima, Y. Tanaka-Kojima, T. Sakakura, Y. Nishizuka, Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab. Invest. 34(6), 550–557 (1976)PubMed
    27.H. Xue, X. Yu, L. Ma, S. Song, Y. Li, L. Zhang, T. Yang, H. Liu, The possible role of CD4CD25 Foxp3/CD4 IL-17A cell imbalance in the autoimmunity of patients with Hashimoto thyroiditis. Endocrine (2015). doi:10.​1007/​s12020-015-0569-y PubMed
    28.N. Figueroa-Vega, M. Alfonso-Perez, I. Benedicto, F. Sanchez-Madrid, R. Gonzalez-Amaro, M. Marazuela, Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 95(2), 953–962 (2010). doi:10.​1210/​jc.​2009-1719 CrossRef PubMed
    29.M. Marazuela, M.A. Garcia-Lopez, N. Figueroa-Vega, H. de la Fuente, B. Alvarado-Sanchez, A. Monsivais-Urenda, F. Sanchez-Madrid, R. Gonzalez-Amaro, Regulatory T cells in human autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 91(9), 3639–3646 (2006). doi:10.​1210/​jc.​2005-2337 CrossRef PubMed
    30.L. Bartalena, L. Baldeschi, A. Dickinson, A. Eckstein, P. Kendall-Taylor, C. Marcocci, M. Mourits, P. Perros, K. Boboridis, A. Boschi, N. Curro, C. Daumerie, G.J. Kahaly, G.E. Krassas, C.M. Lane, J.H. Lazarus, M. Marino, M. Nardi, C. Neoh, J. Orgiazzi, S. Pearce, A. Pinchera, S. Pitz, M. Salvi, P. Sivelli, M. Stahl, G. von Arx, W.M. Wiersinga, Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur. J. Endocrinol. 158(3), 273–285 (2008). doi:10.​1530/​EJE-07-0666 CrossRef PubMed
    31.N. Figueroa-Vega, P. Sanz-Cameno, R. Moreno-Otero, F. Sanchez-Madrid, R. Gonzalez-Amaro, M. Marazuela, Serum levels of angiogenic molecules in autoimmune thyroid diseases and their correlation with laboratory and clinical features. J. Clin. Endocrinol. Metab. 94(4), 1145–1153 (2009). doi:10.​1210/​jc.​2008-1571 CrossRef PubMed
    32.S. Leskela, A. Rodriguez-Munoz, H. de la Fuente, N. Figueroa-Vega, P. Bonay, P. Martin, A. Serrano, F. Sanchez-Madrid, R. Gonzalez-Amaro, M. Marazuela, Plasmacytoid dendritic cells in patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 98(7), 2822–2833 (2013). doi:10.​1210/​jc.​2013-1273 CrossRef PubMed
    33.J.B. Canavan, B. Afzali, C. Scotta, H. Fazekasova, F.C. Edozie, T.T. Macdonald, M.P. Hernandez-Fuentes, G. Lombardi, G.M. Lord, A rapid diagnostic test for human regulatory T-cell function to enable regulatory T-cell therapy. Blood 119(8), e57–e66 (2012). doi:10.​1182/​blood-2011-09-380048 CrossRef PubMed
    34.P.K. Chattopadhyay, J. Yu, M. Roederer, A live-cell assay to detect antigen-specific CD4 + T cells with diverse cytokine profiles. Nat. Med. 11(10), 1113–1117 (2005). doi:10.​1038/​nm1293 CrossRef PubMed
    35.A.P. Weetman, A.M. McGregor, Autoimmune thyroid disease: further developments in our understanding. Endocr. Rev. 15(6), 788–830 (1994)PubMed
    36.S. Sakaguchi, Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101(5), 455–458 (2000). doi:10.​1016/​S0092-8674(00)80856-9 CrossRef PubMed
    37.K. Otsubo, H. Kanegane, I. Kobayashi, T. Miyawaki, IPEX syndrome and human Treg cells. Nihon Rinsho Meneki Gakkai Kaishi 33(4), 196–206 (2010). doi:10.​2177/​jsci.​33.​196 CrossRef PubMed
    38.P. Castro-Sanchez, J.M. Martin-Villa, Gut immune system and oral tolerance. Br. J. Nutr. 109(Suppl 2), S3–11 (2013). doi:10.​1017/​S000711451200522​3 CrossRef PubMed
    39.D. Sancho, M. Gomez, F. Viedma, E. Esplugues, M. Gordon-Alonso, M.A. Garcia-Lopez, H. de la Fuente, A.C. Martinez, P. Lauzurica, F. Sanchez-Madrid, CD69 downregulates autoimmune reactivity through active transforming growth factor-beta production in collagen-induced arthritis. J Clin Invest 112(6), 872–882 (2003). doi:10.​1172/​JCI19112112/​6/​872 PubMedCentral CrossRef PubMed
    40.R. Gandhi, M.F. Farez, Y. Wang, D. Kozoriz, F.J. Quintana, H.L. Weiner, Cutting edge: human latency-associated peptide + T cells: a novel regulatory T cell subset. J Immunol 184(9), 4620–4624 (2010). doi:10.​4049/​jimmunol.​0903329 PubMedCentral CrossRef PubMed
    41.M. Bonelli, A. Savitskaya, K. von Dalwigk, C.W. Steiner, D. Aletaha, J.S. Smolen, C. Scheinecker, Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). Int. Immunol. 20(7), 861–868 (2008). doi:10.​1093/​intimm/​dxn044 CrossRef PubMed
    42.M.H. Garcia-Hernandez, B. Alvarado-Sanchez, M.Z. Calvo-Turrubiartes, M. Salgado-Bustamante, C.Y. Rodriguez-Pinal, L.R. Gamez-Lopez, R. Gonzalez-Amaro, D.P. Portales-Perez, Regulatory T Cells in children with intestinal parasite infection. Parasite Immunol. 31(10), 597–603 (2009). doi:10.​1111/​j.​1365-3024.​2009.​01149.​x CrossRef PubMed
    43.A. Saez-Borderias, M. Guma, A. Angulo, B. Bellosillo, D. Pende, M. Lopez-Botet, Expression and function of NKG2D in CD4 + T cells specific for human cytomegalovirus. Eur. J. Immunol. 36(12), 3198–3206 (2006). doi:10.​1002/​eji.​200636682 CrossRef PubMed
    44.V. Groh, A. Bruhl, H. El-Gabalawy, J.L. Nelson, T. Spies, Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100(16), 9452–9457 (2003). doi:10.​1073/​pnas.​1632807100163280​7100 PubMedCentral CrossRef PubMed
    45.M. Allez, V. Tieng, A. Nakazawa, X. Treton, V. Pacault, N. Dulphy, S. Caillat-Zucman, P. Paul, J.M. Gornet, C. Douay, S. Ravet, R. Tamouza, D. Charron, M. Lemann, L. Mayer, A. Toubert, CD4 + NKG2D + T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 132(7), 2346–2358 (2007). doi:10.​1053/​j.​gastro.​2007.​03.​025 CrossRef PubMed
    46.R. Gonzalez-Amaro, F. Sanchez-Madrid, Cell adhesion molecules: selectins and integrins. Crit. Rev. Immunol. 19(5–6), 389–429 (1999)PubMed
    47.D. Cao, V. Malmstrom, C. Baecher-Allan, D. Hafler, L. Klareskog, C. Trollmo, Isolation and functional characterization of regulatory CD25brightCD4 + T cells from the target organ of patients with rheumatoid arthritis. Eur. J. Immunol. 33(1), 215–223 (2003). doi:10.​1002/​immu.​200390024 CrossRef PubMed
  • 作者单位:Ana Rodríguez-Muñoz (1)
    Marlen Vitales-Noyola (2)
    Ana Ramos-Levi (1)
    Ana Serrano-Somavilla (1)
    Roberto González-Amaro (2)
    Mónica Marazuela (1)

    1. Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, C/Diego de León 62, 28006, Madrid, Spain
    2. Department of Immunology, School of Medicine, UASLP, San Luis Potosí, SLP, Mexico
  • 刊物主题:Endocrinology; Diabetes; Internal Medicine; Science, general;
  • 出版者:Springer US
  • ISSN:1559-0100
文摘
Regulatory T (Treg) cells play an important role in the pathogenesis of autoimmune thyroid disorders (AITD). New subsets of CD4+CD69+ and CD4+NKG2D+ T lymphocytes that behave as regulatory cells have been recently reported. The role of these immunoregulatory lymphocytes has not been previously explored in AITD. We analyzed by multi-parametric flow cytometry different Treg cell subsets in peripheral blood from 32 patients with AITD and 19 controls, and in thyroid tissue from seven patients. The suppressive activity was measured by an assay of inhibition of lymphocyte activation. We found a significant increased percentage of CD4+CD69+IL-10+, CD4+CD69+NKG2D+, and CD4+CD69+IL-10+NKG2D+ cells, in peripheral blood from GD patients compared to controls. The increase in CD4+CD69+IL-10+ and CD4+CD69+IL-10+NKG2D+ T cells was especially remarkable in patients with active Graves’ ophthalmopathy (GO), and a significant positive correlation between GO activity and CD4+CD69+IL-10+ or CD4+CD69+IL-10+NKG2D+ cells was also found. In addition, these cells were increased in patients with a more severe and/or prolonged disease. Thyroid from AITD patients showed an increased proportion of CD69+ regulatory T cells subpopulations compared to autologous peripheral blood. The presence of CD69+, NKG2D+, and IL-10+ cells was confirmed by immunofluorescence microscopy. In vitro functional assays showed that CD69+ Treg cells exerted an important suppressive effect on the activation of T effector cells in controls, but not in AITD patients. Our findings suggest that the levels of CD69+ regulatory lymphocytes are increased in AITD patients, but they are apparently unable to down-modulate the autoimmune response and tissue damage.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700