Adult reserve stem cells and their potential for tissue engineering
详细信息    查看全文
  • 作者:Henry E. Young (1) (2)
    Cecile Duplaa (3)
    Marina Romero-Ramos (4)
    Marie-Francoise Chesselet (4)
    Patrick Vourc'h (4)
    Michael J. Yost (5)
    Kurt Ericson (5)
    Louis Terracio (6)
    Takayuki Asahara (7) (8)
    Haruchika Masuda (7) (8)
    Sayaka Tamura-Ninomiya (7) (8)
    Kristina Detmer (1)
    Robert A. Bray (9)
    Timothy A. Steele (10)
    Douglas Hixson (11)
    Mohammad el-Kalay (12)
    Brain W. Tobin (1) (2)
    Roy D. Russ (1)
    Michael N. Horst (1)
    Julie A. Floyd (1)
    Nicholas L. Henson (1)
    Kristina C. Hawkins (1)
    Jaime Groom (1)
    Amar Parikh (1)
    Lisa Blake (1)
    Laura J. Bland (1)
    Angela J. Thompson (1)
    Amy Kirincich (5)
    Catherine Moreau (3)
    John Hudson (13)
    Frank P. Bowyer III (2)
    T. J. Lin (14)
    Asa C. Black Jr. (1) (14)
  • 关键词:Adult ; pluripotent ; stem cells ; mammals ; humans ; embyonic ; mesenchymal ; neurodegenerative ; diabetes ; infarction
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2004
  • 出版时间:February 2004
  • 年:2004
  • 卷:40
  • 期:1
  • 页码:1-80
  • 全文大小:2922KB
  • 参考文献:1. Toole, B. P., and Gross, J. (1971) The extracellular matrix of the regenerating newt limb: synthesis and removal of hyaluronate prior to differentiation. / Dev. Biol. 25, 57-7. CrossRef
    2. Stocum, D. L. (1998) Regenerative biology and engineering: strategies for tissue restoration. / Wound Rep. Reg. 6, 276-90. CrossRef
    3. Tsai R. Y., Kittappa, R., and McKay, R. G. D. (2002) Plasticity, niches, and the use of stem cells. / Dev. Cell 2, 707-12. CrossRef
    4. Donovan, P. J., and Gearhart, J. (2001) The end of the beginning for pluripotent stem cells. / Nature 414, 92-7. CrossRef
    5. Forbes, S. J., Vig, P., Poulsom, R., Wright, N. A., and Alison, M. R. (2002) Adult stem cell plasticity: new pathways of tissue regeneration become visible. / Clin. Sci. (Lond.) 103, 355-69.
    6. Poulsom, R., Alison, M. R., Forbes, S. J., and Wright, N. A. (2002) Adult stem cell plasticity. / J. Pathol. 197, 441-56. CrossRef
    7. Eglitis, M. A., and Mezey, E. (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. / Proc. Natl. Acad. Sci. USA 94, 4080-085. CrossRef
    8. Brazelton, T. R., Rossi, F. M., Keshet, G. I., and Blau, H. M. (2000) From marrow to brain: expression of neuronal phenotypes in adult mice. / Science 290, 1775-779. CrossRef
    9. Woodbury, D., Schwarz, E. J., Prockop, D. J., and Black, I. B. (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. / J. Neurosci. Res. 61, 364-70. CrossRef
    10. Petersen, B. E., Bowen, W. C., Patrene, K. D., Mars, W. M., Sullivan, A. K., Murase, N., et al. (1999) Bone marrow as a potential source of hepatic oval cells. / Science 284, 1168-170. CrossRef
    11. Lagasse, E., Connors, H., Al-Dhalimy, M., Reitsma, M., Dohse, M., Osborne, L., et al. (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. / Nat. Med. 6, 1229-234. CrossRef
    12. Theise, N. D., Badger, S., Serena, R., Henegariu, O., Sell, S., Crawford, J. M., et al. (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. / Hepatology 31, 235-40. CrossRef
    13. Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo A., Cossu, G., et al. (1998) Muscle regeneration by bone marrowderived myogenic progenitors. / Science 279, 1528-530. CrossRef
    14. Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., et al. (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. / Nature 401, 390-94.
    15. Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., and Vescovi, A. L. (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. / Science 283, 534-37. CrossRef
    16. Vescovi, A. L., Galli, R., and Gritti, A. (2001) The neural stem cells and their transdifferentiation capacity. / Biomed. Pharmacother. 55, 201-05. CrossRef
    17. Clarke, D. L., Johansson, C. B., Wilbertz, J., Veress, B., Nilsson, E., Karlstrom, H., et al. (2000) Generalized potential of adult neural stem cells. / Science 288, 1660-663. CrossRef
    18. Galli, R., Borello, U., Gritti, A., Minasi, M. G., Bjornson, C., Coletta, M., et al. (2000) Skeletal myogenic potential of human and mouse neural stem cells. / Nat. Neurosci. 3, 986-91. CrossRef
    19. Tsai, R. Y., and McKay, R. D. (2000) Cell contact regulates fate choice by cortical stem cells. / J. Neurosci. 20, 3725-735.
    20. Jackson, K. A., Mi, T., and Goodell, M. A. (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. / Proc. Natl. Acad. Sci. USA 96, 14482-4486. CrossRef
    21. Bjerknes, M., and Cheng, H. (2002) Multipotential stem cells in adult mouse gastric epithelium. / Am. J. Physiol. Gastrointest. Liver Physiol. 283, G767-G777.
    22. Grounds, M. D., Garrett, K. L., Lai, M. C., Wright, W. E., and Beilharz, M. W. (1992) Identification of muscle precursor cells in vivo by use of MyoD1 and myogenin probes. / Cell. Tiss. Res. 267, 99-04. CrossRef
    23. Beauchamp, J. R., Heslop, L., Yu, D. S. W., Tajbakhsh, S., Kelly, R. G., Wernig, A., et al. (2000) Expresiion of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. / J. Cell. Biol. 151, 1221-233. CrossRef
    24. Young, H. E. (1977) Epidermal ridge formation during limb regeneration in the adult salamander, / Ambystoma annulatum. / Proc. Ark. Acad. Sci. 31, 107-09.
    25. Young, H. E. (1977) Limb regeneration in the adult salamander, Ambystoma annulatum Cope 1889 (Amphibia: Ambystomatidae). Fayetteville: University of Arkansas Library Press.
    26. Young H. E. (1977) Anomalies during limb regeneration in the adult salamander, / Ambystoma annulatum. / Proc. Ark. Acad. Sci. 31, 110-11.
    27. Young, H. E. (1983) / A Temporal Examination of Glycoconjugates During the Initiation Phase of Limb Regeneration in Adult Ambystoma. Texas Tech University Library Press, Lubbock, TX.
    28. Young, H. E. (2000) Stem cells and tissue engineering. In / Gene Therapy in Orthopaedic and Sports Medicine (Huard, J., Fu, F. H., eds.), Springer-Verlag, New York, pp. 143-73.
    29. Young, H. E. (2004) Existence of reserve quiescent stem cells in adults, from amphibians to humans. / Curr. Top. Microbiol. Immunol. 280, 71-09.
    30. Young, H. E. and Lucas, P. A. (1998) Pluripotent mesenchymal stem cells and methods of use thereof. US Patent No. 5,827,735.
    31. Young, H. E., Bailey, C. F., and Dalley, B. K. (1983) Environmental conditions prerequisite for complete limb, regeneration in the postmetamorphic adult land-phase salamander, Ambystoma. / Anat. Rec. 206, 289-94. CrossRef
    32. Young, H. E., Bailey, C. F., and Dalley, B. K. (1983) Gross morphological analysis of limb regeneration in postmetamorphic adult Ambystoma. / Anat. Rec. 206, 295-06. CrossRef
    33. Young, H. E., Dalley, B. K., and Markwald, R. R. (1983) Identification of hyaluronate within peripheral nervous tissue matrices during limb regeneration. In / Developing and Regenerating Vertebrate Nervous Systems, Neurology and Neurobiology (Coates, P. W., Markwald, R. R., Kenny, A. D., eds.) Alan R. Liss. New York, vol. 6 pp. 175-83.
    34. Young, H. E., Dalley, B. K., and Markwald, R. R. (1983) The interaction of glycosaminoglycans (GAG) and nervous tissue regeneration in adult Ambystoma. / Anat. Rec. 205, 202.
    35. Young, H. E., Bailey, C. F., Markwald, R. R., and Dalley, B. K. (1985) Histological analysis of limb regeneration in postmetamorphic adult Ambystoma. / Anat. Rec. 212, 183-94. CrossRef
    36. Young, H. E., Dalley, B. K., and Markwald, R. R. (1989) Glycoconjugates in normal wound tissue matrices during the initiation phase of limb regeneration in adult Ambystoma. / Anat. Rec. 223, 231-41. CrossRef
    37. Young, H. E., Young, V. E., and Caplan, A. I. (1989) Comparison of fixatives for maximal retention of radiolabeled glycoconjugates for autoradiography, including use of sodium sulfate to release unincorporated [35S]sulfate. / J. Histochem. Cytochem. 37, 223-28.
    38. Young, H. E., Morrison, D. C., Martin, J. D., and Lucas, P. A. (1991) Cryopreservation of embryonic chick myogenic lineage-committed stem cells. / J. Tiss. Cult. Meth. 13, 275-84. CrossRef
    39. Young, H. E., Ceballos, E. M., Smith, J. C., Lucas, P. A., and Morrison, D. C. (1992) Isolation of embryonic chick myosatellite and pluripotent mesenchymal stem cells. / J. Tiss. Cult. Meth. 14, 85-2. CrossRef
    40. Young, H. E., Sippel, J., Putnam, L. S., Lucas, P. A., and Morrison, D. C. (1992) Enzyme-linked immuno-culture assay. / J. Tiss. Cult. Meth. 14, 31-6. CrossRef
    41. Young, H. E., Ceballos, E. M., Smith, J. C., Mancini, M. L., Wright, R. P., Ragan, B. L., et al. (1993) Pluripotent mesenchymal stem cells reside within avian connective tissue matrices. / In Vitro Cell. Dev. Biol. Anim. 29A, 723-36.
    42. Young, H. E., Mancini, M. L., Wright, R. P., Smith, J. C., Black, A. C., Jr., Reagan, C. R., et al. (1995) Mesenchymal stem cells reside within the connective tissues of many organs. / Dev. Dynam. 202, 137-44.
    43. Young, H. E., Wright, R. P., Mancini, M. L., Lucas, P. A., Reagan, C. R., and Black, A. C., Jr. (1998) Bioactive factors affect proliferation and phenotypic expression in pluripotent and progenitor mesenchymal stem cells. / Wound Rep. Reg. 6, 65-5. CrossRef
    44. Young, H. E., Rogers, J. J., Adkison, L. R., Lucas, P. A., and Black, A. C., Jr. (1998) Muscle morphogenetic protein induces myogenic gene expression in Swiss-3T3 cells. / Wound Rep. Reg. 6, 530-41.
    45. Young, H. E., Steele, T. A., Bray, R. A., Detmer, K., Blake, L. W., Lucas, P. A., et al. (1999) Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC Class-I. / Proc. Soc. Exp. Biol. Med. 221, 63-1. CrossRef
    46. Young, H. E., Duplaa, C., Young, T. M., Floyd, J. A., Reeves, M. L., Davis, K. H., et al. (2001) Clonogenic analysis reveals reserve stem cells in postnatal mammals: I. Pluripotent mesenchymal stem cells. / Anat. Rec. 263, 350-60. CrossRef
    47. Young, H. E., Steele, T., Bray, R. A., Hudson, J., Floyd, J. A., Hawkins, K. C., et al. (2001) Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. / Anat. Rec. 264, 51-2. CrossRef
    48. Young, H. E., Black, A. C., Jr. (2004) Adult stem cells. / Anat. Rec., 276A, 75-02. CrossRef
    49. Young, H. E., Duplaa, C., Yost, M. J., Henson, N. L., Floyd, J. A., Detmer, K., et al. (2004) Clonogenic analysis reveals reserve stem cells in postnatal mammals: II. Pluripotent epiblastic-like stem cells. / Anat. Rec. 276A, in press.
    50. Lucas, P. A., Calcutt, A. F., Ossi, P., Young, H. E., and Southerland, S. S. (1993) Mesenchymal stem cells from granulation tissue. / J. Cell. Biochem. 17E, 122.
    51. Lucas, P. A., Young, H. E., and Laurencin, C. T. (1994) Muscle morphogenetic protein and use thereof. US Patent No. 5,328,695.
    52. Lucas, P. A., Calcutt, A. F., Ossi, P., Young, H. E., and Southerland, S. S. (1994) Granulation tissue contains cells capable of differentiating into multiple mesenchymal phenotypes. / J. Cell. Biochem. 18C, 276.
    53. Lucas, P. A., Calcutt, A. F., Southerland, S. S., Wilson, J. A., Harvey, R. L., Warejcka, D. J., et al. (1995) A population of cells resident within embryonic and newborn rat skeletal muscle is capable of differentiating into multiple mesodermal phenotypes. / Wound Rep. Reg. 3, 457-68.
    54. Lucas, P. A., Warejcka, D. J., Zhang, L.-M., Newman, W. H., and Young, H. E. (1996) Effect of rat mesenchymal stem cells on the development of abdominal adhesions after surgery. / J. Surg. Res. 62, 229-32. CrossRef
    55. Lucas, P. A., Warejcka, D. J., Young, H. E., and Lee, B. Y. (1996) Formation of abdominal adhesions is inhibited by antibodies to transforming growth factor-beta1. / J. Surg. Res. 65, 135-38. CrossRef
    56. Pate, D. W., Southerland, S. S., Grande, D. A., Young, H. E., and Lucas, P. A. (1993) Isolation and differentiation of mesenchymal stem cells from rabbit muscle. / Surg. Forum 44, 587-89.
    57. Rogers, J. J., Young, H. E., Adkison, L. R., Lucas, P. A., and Black, A. C., Jr. (1995) Differentiation factors induce expression of muscle, fat, cartilage, and bone in a clone of mouse pluripotent mesenchymal stem cells. / Am. Surg 61, 231-36.
    58. Dixon, K., Murphy, R. W., Southerland, S. S., Young, H. E., Dalton, M. L., and Lucas, P. A. (1996) Recombinant human bone morphogenetic proteins-2 and 4 (rhBMP-2 and rhBMP-4) induce several mesenchymal phenotypes in culture. / Wound Rep. Reg. 4, 374-80. CrossRef
    59. Warejcka, D. J., Harvey, R., Taylor, B. J., Young, H. E., and Lucas, P. A. (1996) A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. / J. Surg. Res. 62, 233-42. CrossRef
    60. Romero-Ramos, M., Vourc'h, P., Young, H. E., Lucas, P. A., Wu, Y., Chivatakarn, O., et al. (2002) Neuronal differentiation of stem cells isolated from adult muscle. / J. Neurosci. Res. 69, 894-07. CrossRef
    61. Thornton, C. S. (1968) Amphibian limb regeneration. In / Advances in Morphogenesis (Brachet, J., King, T. J. V., eds.). Academic Press, New York, vol. 7, pp. 205-49.
    62. Singer, M. (1978) On the nature of the neurotrophic phenomenon in urodele regeneration. / Am. Zool. 18, 829-41.
    63. Tank, P. W. and Holder, N. (1981) Pattern regulation in the regenerating limbs of urodele amphibians. / Quart Rev Biol 56, 113-42. CrossRef
    64. Brockes, J. P. (1997) Amphibian limb regeneration: rebuilding a complex structure. / Science 276, 81-7. CrossRef
    65. Iten, L. E. and Bryant, S. V. (1973) Forelimb regeneration from different levels of amputation in the newt, / Notophthalamus viridescens: length, rate, stage. / Wilhelm Roux Arch. 173, 77-9. CrossRef
    66. Farber, J. (1959) An experimental analysis of regional organization in the regenerating forelimb of the axolotl ( / Ambystoma mexicanum). / Arch. Biol. 71, 1-2.
    67. Tank, P. W., Carlson, B. M., and Connelly, T. G. (1976) A staging system for forelimb regeneration in the axolotl, / Ambystoma mexicanum. / J. Morph. 150, 117-28. CrossRef
    68. Stocum, D. L. (1979) Stages of forelimb regeneration in / Ambystoma maculatum. / J. Exp. Zool. 209, 395-16. CrossRef
    69. Scadding, S. R. (1977) Phylogenetic distribution of limb regeneration capacity in adult amphibia. / J. Exp. Zool. 202, 57-8. CrossRef
    70. Singer, M. (1951) Induction of regeneration of the forelimb of the frog by augmentation of the nerve supply. / Proc. Soc. Exp. Biol. Med. 76, 413-16.
    71. Pritchette, W. H. and Dent, J. N. (1972) The role of size in the rate of limb regeneration in the adult newt. / Growth 36, 275-89.
    72. Young, H. E., Dalley, B. K., and Markwald, R. R. (1989) Effect of selected denervations on glycoconjugate composition and tissue morphology during the initiation phase of limb regeneration in adult Ambystoma. / Anat. Rec. 223, 231-41. CrossRef
    73. Brockes, J. P. (1997) Amphibian limb regeneration: rebuilding a complex structure. / Science 276, 81-7. CrossRef
    74. Young, H. E., Carrino, D. A., and Caplan, A. I. (1989) Histochemical analysis of newly synthesized and resident sulfated glycosaminoglycans during musculogenesis in the embryonic chick leg. / J. Morphol. 201, 85-03. CrossRef
    75. Mauro, A. (1961) Satellite cell of skeletal muscle fibers. / J. Biophys. Biochem. Cytol. 9, 493-98.
    76. Campion, D. R. (1984) The musce satellite cell: a review. / Int. Rev. Cytol. 87, 225-51.
    77. Ailhaud, G., Grimaldi, P., and Negrel, R. (1992) Cellular and molecular aspects of adipose tissue development. / Annu. Rev. Nutr. 12, 207-33. CrossRef
    78. Cruess, R. L. (1982) / The Musculoskeletal System: Embryology, Biochemistry, and Physiology. Churchill Livingston, New York.
    79. Vierck, J. L., McNamara, J. P., and Dodson, M. V. (1996) Proliferation and differentiation of progeny of ovine unilocular fat cells (adipofibroblasts). / In Vitro Cell. Dev. Biol. Anim. 32, 564-72.
    80. Owen, M. (1988) Marrow stromal cells. / J. Cell. Sci. Suppl. 10, 63-6.
    81. Beresford, J. N. (1989) Osteogenic stem cells and the stromal system of bone and marrow. / Clin. Orthop. 240, 270-80.
    82. Caplan, A. I., Elyaderani, M., Mochizuki, Y., Wakitani, S., and Goldberg, V. (1997) Principles of cartilage repair and regeneration. / Clin. Orthop. Rel. Res. 342, 254-69. CrossRef
    83. Prockop, D. J. (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. / Science 276, 71-4. CrossRef
    84. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999) Multilineage potential of adult human mesenchymal stem cells. / Science 148, 143-47. CrossRef
    85. Palis, J. and Segel, G. B. (1998) Developmental biology of erythropoiesis. / Blood Rev. 12, 1061-064. CrossRef
    86. McGuire, W. P. (1998) High-dose chemotherapy and autologous bone marrow or stem cell reconstitution for solid tumors. / Curr. Probl. Cancer 22, 135-37. CrossRef
    87. Ratajczak, M. Z., Pletcher, C. H., Marlicz, W., Machlinski, B., Moore, J., Wasik, M., et al. (1998) CD34+, kit+, rhodamine 123 (low) phenotype identifies a marrow cell population highly enriched for human hematopoietic stem cells. / Leukemia 12, 942-50. CrossRef
    88. Hayflick, L. (1965) The limited / in vitro lifetime of human diploid cell strains. / Exp. Cell. Res. 37, 614-36. CrossRef
    89. Young, H. E., Carrino, D. A., and Caplan, A. I. (1990) Changes in synthesis of sulfated glycoconjugates during muscle development, maturation, and aging in embryonic to senescent CBF-1 mouse. / Mech. Ageing Dev. 53, 179-93. CrossRef
    90. Urist, M. R. (1965) Bone: formation by autoinduction. / Science 150, 893-99. CrossRef
    91. Hauschka, P. V., Mavrakos, A. E., Iafrati, M. D., Doleman, S. E., and Klagsbrun, M. (1986) Growth factors in bone matrix: isolation of multiple types by affinity chromatography on heparin-Sepharose. / J. Biol. Chem. 261, 12665-2674.
    92. Linkhart, T. A., Jennings, J. C., Mohan, S., Wakley, G. K., and Baylink, D. J. (1986) Characterization of mitogenic activities extracted from bovine bone matrix. / Bone 7(6), 479-87. CrossRef
    93. Canalis, E., McCarthy, T., and Centrella, M. (1988) Growth factors and the regulation of bone remodeling. / J. Clin. Invest. 81, 277-81.
    94. Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., et al. (1988) Novel regulators of bone formation: molecular clones and activities. / Science 242, 1528-534. CrossRef
    95. Urist, M. R. (1989) Bone morphogenetic protein, bone regeneration, heterotopic ossification, and the bone-bone marrow consortium. In / Bone and Mineral Research (Peck, W. A., ed.). Elsevier, New York, vol. 6, pp. 57-12.
    96. Wang, E. A., Rozen, V., D'Alessandro, J. S., Bauduy, M., Cordes, P., Harada, T., et al. (1990) Recombinant human bone morphogenetic protein induces bone formation (cartilage induction). / Proc. Natl. Acad. Sci. USA 87, 2220-224. CrossRef
    97. Syftestad, G. T., Lucas, P. A., and Caplan, A. I. (1985) The in vitro chondrogenic response of limb-bud mesenchyme to a water-soluble fraction prepared from demineralized bone matrix. / Differentiation 29, 230-37. CrossRef
    98. Frolik, C. A., Ellis, F., and Williams, C. (1989) Isolation and characterization of insulin-like growth factor-II from human bone. / Biochem. Biophys. Res. Commun. 151, 1011-018. CrossRef
    99. Lucas, P. A., Young, H. E., and Putnam, L. S. (1991) Quantitation of chondrogenesis in culture using Alcec blue staining. / FASEB J. 5, A390.
    100. Kishimoto, T., Kikutani, H., Borne, A. E. G. K.r.v.d., Goyert, S. M., Mason, D., Miyasaka, M., et al. (1997) / Leucocyte Typing VI: White Cell Differentiation Antigens. Garland, Hamden, CT.
    101. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998) Embryonic stem cell lines derived from human blastocysts. / Science 282, 1145-147. CrossRef
    102. Shamblott, M. J., Axelman, J., Wang, S., Bugg, E. M., Littlefield, J. W., Donovan, P. J., et al. (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. / Proc. Natl. Acad. Sci. USA 95, 13726-3731. CrossRef
    103. Reyes, M. and Verfaillie, C. M. (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. / Ann. N Y Acad. Sci. 938, 231-33; discussion 233-235. CrossRef
    104. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C. M. (2002) Multipotent progenitor cells can be isolated from bone marrow, muscle and brain. / Exp. Hematol. 30, 896-04. CrossRef
    105. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavillio, F., and Goodell, M. A. (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. / Proc. Natl. Acad. Sci. USA 99, 1341-346. CrossRef
    106. Lucas, P. A., Calcutt, A. F., Mulvaney, D. J., Young, H. E., and Southerland, S. S. (1992) Isolation of putative mesenchymal stem cells from rat embryonic and adult skeletal muscle. / In Vitro Cell. Dev. Biol. 28, 154A.
    107. Lucas, P. A., Syftestad, G. T., and Caplan, A. I. (1986) Partial isolation and characterization of a chemotactic factor from adult bovine bone for mesenchymal cells. / Bone 7, 365-71. CrossRef
    108. Lucas, P. A., Price, P. A., and Caplan, A. I. (1988) Chemotactic response of mesenchymal cells, fibroblasts and osteoblast-like cells to bone Gla protein. / Bone 5, 19-3.
    109. Lucas, P. A., Syftestad, G. T., and Caplan, A. I. (1988) A water-soluble fraction from adult bone stimulates the differentiation of cartilage explants of embryonic muscle. / Differentiation 37, 47-2. CrossRef
    110. Lucas, P. A., Syftestad, G. T., Goldberg, V. M., and Caplan, A. I. (1989) Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a collagenous delivery vehicle. / Biomed. Mater. Res. 23(A, Suppl. 1), 23-9. CrossRef
    111. Lucas, P. A., Laurencin, C., Syftestad, G. T., Domb, A., Goldberg, V. M., Caplan, A. I., et al. (1990) Ectopic induction of cartilage and bone by water-soluble proteins from bovine bone using a polyanhydride delivery vehicle. / J. Biomed. Mater. Res. 24, 901-11. CrossRef
    112. Lucas, P. A. and Dziewiatkowski, D. D. (1987) Feedback control of selected biosynthetic activities of chondrocytes in culture. / Connec. Tiss. Res. 16, 323-41.
    113. Lucas, P. A. and Caplan, A. I. (1988) Chemotactic response of embryonic limb bud mesenchymal cells and muscle-derived fibroblasts to transforming growth factor-beta. / Connec. Tiss. Res. 18, 1-.
    114. Lucas, P. A. (1989) Chemotactic response of osteoblast-like cells to transforming growth factor-beta. / Bone 10, 459-63. CrossRef
    115. Bowerman, S. G., Taylor, S. S., Putnam, L., Young, H. E., and Lucas, P. A. (1991) Transforming growth factor-β (TGF-β) stimulates chondrogenesis in cultured embryonic mesenchymal cells. / Surg. Forum 42, 535-36.
    116. Shoptaw, J. H., Bowerman, S., Yong, H. E., and Lucas, P. A. (1991) Use of gelfoam as a substrate for osteogenic cells of marrow. / Surg. Forum 42, 535-38.
    117. Hinton, J. L., Jr., Warejcka, D. J., Mei, Y., McLendon R. E., Laurencin, C., Lucas, P. A., et al. (1995) Inhibition of epidural scar formation after lumbar laminectomy in the rat. / Spine 20, 564-70; discussion 579-580. CrossRef
    118. Reynolds, B. A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. / Science 255, 1707-710. CrossRef
    119. Gage, F. H., Coates, P. W., Palmer, T. D., Kuhn, H. G., Fisher, L. J., Suhonen, J. O., et al. (1995) Survival and differentiation of adult neuronal progenitr cells transplanted to the adult brain. / Proc. Natl. Acad. Sci. USA 92, 11897-1883. CrossRef
    120. Bjorklund, A. and Lindvall, O. (2000) Cell replacement therapies for central nervous system disorders. / Nat. Neurosci. 3, 537-44. CrossRef
    121. Cornellison, D. D. and Wold, B. J. (1997) Singlecell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. / Dev. Biol. 191, 270-83. CrossRef
    122. Bosch, P., Musgrave, D. S., Lee, J. Y., Cummins, J., Shuler, T., Ghivizzani, T. C., et al. (2000) Osteoprogenitor cells within skeletal muscle. / J. Orthop. Res. 18, 933-44. CrossRef
    123. Lee, J. Y., Qu-Petersen, Z., Cao, B., Kimura, S., Jankowski, R., Cummins, J., et al. (2000) Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. / J. Cell. Biol. 150, 1085-100. CrossRef
    124. Toma, J. G., Akhavan, M., Fermandes, K. J., Barnabe-Heider, F., Sadikot, A., Kaplan, D. R., et al. (2001) Isolation of multipotent stem cells from the dermis of mammalian skin. / Nat. Cell. Biol. 3, 778-84. CrossRef
    125. Azizi, S. A., Stokes, D., Augelli, B. J., DiGirolamo, C., and Prockop, D. J. (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. / Proc. Natl. Acad. Sci. USA 95, 3908-913. CrossRef
    126. Kopen, G. C., Prockop, D. J., and Phinney, D. G. (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. / Proc. Natl. Acad. Sci. USA 96, 10711-0716. CrossRef
    127. Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., and McKercher, S. R. (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. / Science 290, 1779-782. CrossRef
    128. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. / Exp. Neurol. 164, 247-56. CrossRef
    129. Colter, D. C., Sekiya, I., and Prockop, D. J. (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. / Proc. Natl. Acad. Sci. USA 98, 7841-845. CrossRef
    130. Deng, W., Obrocka, M., Fischer, I., and Prockop, D. J. (2001) In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. / Biochem. Biophys. Res. Commun. 282, 148-52. CrossRef
    131. Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L., and Verfaillie, C. M. (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. / Blood 98, 2615-625. CrossRef
    132. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992). A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. / J. Neurosci. 12, 4565-574.
    133. Svendsen, C. N., ter Borg, M. G., Armstrong, R. J., Rosser, A. E., Chandran, S., Ostenfeld, T., et al. (1998) A new method for the rapid and long term growth of human neural precursor cells. / J. Neurosci. Methods 85, 141-52. CrossRef
    134. Cochard, P. and Paulin, D. (1984) Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. / J. Neurosci. 4, 2080-094.
    135. Lendahl, U., Zimmerman, L. B., and McKay, R. D. (1990) CNS stem cells express a new class of intermediate filament protein. / Cell 60, 585-95. CrossRef
    136. Zimmerman, L., Parr, B., Lendahl, U., Cunningham, M., McKay, R., Gavin, B., et al. (1994) Independent regulatory elemtns in the nestin gene direct transgene expression to neural stem cells or muscle precursors. / Neuron 12, 11-4. CrossRef
    137. Feldman, D. H., Thinschmidt, J. S., Peel, A. L., Papke, R. L., and Reier, P. J. (1996) Differentiation of ionic currents in CNS progentior cells: dependence upon substrate attachment and epidermal growth factor. / J. Exp. Neurol. 140, 206-17 CrossRef
    138. Dawson, M. R., Levine, J. M., and Reynolds, R. (2000) NG2-expressing cells in the central nervous system: are they oligodendroglial progenitors? / J. Neurosci. Res. 61, 471-79. CrossRef
    139. Gritti, A., Galli, R., and Vescovi, A. L. (2001) Cultures of stem cells of the central nervous system. In / Protocols for Neural Cell Culture (Fedoroff, S., Richardson, A., eds.), Totowa, NJ, Humana Press, pp. 173-98. CrossRef
    140. van Praag, H., Schinder, A. E., Christie, B. R., Toni, N., Palmer, T. D., and Gage, F. H. (2002) Functional neurogenesis in the adult hippocampus. / Nature 415, 1030-034. CrossRef
    141. Pesce, M. and Scholer, H. R. (2001) / Oct-4: gatekeeper in the beginnings of mammalian development. / Stem Cells 19, 271-78. CrossRef
    142. Mansouri, A., Hallonet, M., and Gruss, P. (1996) Pax genes and their roles in cell differ-entiation and development. / Curr. Opin. Cell. Biol. 8, 851-57. CrossRef
    143. Orkin, S. H. and Zon, L. I. (2002) Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. / Nat. Immunol. 3, 323-28. CrossRef
    144. Mertelsmann, R. (2000) Plasticity of bone marrow-derived stem cells. / J. Hematother. Stem Cell Res. 9, 957-60. CrossRef
    145. Alexander, W. S. (1998) Cytokines in hematopoiesis. / Int. Rev. Immunol. 16, 651-82.
    146. National Blood Data Resource Center (www.nbdrc.org).
    147. Slavin, S. (2000) New strategies for bone marrow transplantation. / Curr. Opin. Immunol. 12, 542-51. CrossRef
    148. National Marrow Donor Program (www.marrow.org).
    149. Confer, D. L. (1997) Unrelated marrow donor registries. / Curr. Opin. Hematol. 4, 408-12. CrossRef
    150. van der Kooy, D. and Weiss, S. (2000) Why stem cells? / Science 287, 1439-441. CrossRef
    151. Weissman, I. L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. / Science 287, 1442-446. CrossRef
    152. Vogel, G. (2000) Cell biology: stem cells: new excitement, persistent questions. / Science 290, 1672-674. CrossRef
    153. Alison, M. R., Poulsom, R., Jeffery, R., Dhillon, A. P., Quaglia, A., Jacob, J., et al. (2000) Hepatocytes from non-hepatic adults stem cells. / Nature 406, 257. CrossRef
    154. Li, F., Linton, G. F., Sekhsaria, S., Whiting-Theobald, N., Katkin, J. P., Gallin, J. I., et al. (1994) CD34+ peripheral blood progenitors as a target for genetic correction of the two flavocytochrome b558 defective forms of chronic granulomatous disease. / Blood 84, 53-8.
    155. Eisenbarth G. S., Connelly, J., and Soeldner, J. S. (1987) The “natural-history of Type I diabetes. / Diabetes/Metabolism Rev. 3, 873-91.
    156. Ward, W. K., Beard, J. C., and Porte, D., Jr. (1986) Clinical aspects of islet b-cell function in non-insulin dependent diabetes mellitus. / Diabetes/Metabolism Rev. 2, 297-13. CrossRef
    157. Chandra, R. K. (1989) Nutritional regulation of immunity and risk of infection in old age. / Immunology 67, 141-47.
    158. Fiatarone, M. A., Marks, E.C., Ryan, N. D., Meridith, C. N., Lipsitz, L. A., and Evans, W. J. (1990) High-intensity strength training in nonagenarians: effects on skeletal muscle. / JAMA 263, 3029-034. CrossRef
    159. Frontera, W. R., Hughes, V. A., Lutz, K. J., and Evans, W. J. (1991) A cross-sectional study of muscle strength and mass in 45- to 78 yr-old men and women. / J. Appl. Physiol 71, 644-50.
    160. Walsh, C. H., Soler, N. G., James, H, Harvey, T. C., Thomas, B. J., Fremlin, J. H., et al. (1976) Studies in whole body potassium and whole body nitrogen in newly diagnosed diabetics. / Q. J. Med. 45(178), 295-01.
    161. Nair, K. S., Garrow, J. S., Ford, C., Mahler, R. F., and Halliday, D. (1983), Effect of poor diabetic control and obesity on whole body protein metabolism in man. / Diabetologia 25, 400-03. CrossRef
    162. Morgan, H. E., Jefferson, L. S., Wolpert, E. B., and Rannels, D. E. (1971) Regulation of protein synthesis in heart muscle: II. Effect of amino acid levels and insulin on ribosomal aggregation. / J. Biol. Chem. 246, 2163-170.
    163. Jefferson, L. S., Li, J. B., and Rannels, S. R. (1977) Regulation by insulin of amino acid release and protein turnover in the perfused rat hemicorpus. / J. Biol. Chem. 252, 1476-483.
    164. Peavy, D. E., Taylor, J. M., and Jefferson, L. S. (1978) Correlation of albumin production rates and mRNA levels in livers of normal, diabetic and insulin-treated diabetic rats. / Proc. Natl. Acad. Sci. USA 75, 5879-883. CrossRef
    165. Froesch, E. R., Guler, H. P., Schmid, C., Ernst, M., and Zapf, J. (1990) Insulin-like growth factors. In / Ellenberg and Rifkin's Diabetes Mellitus: Theory and Practice (Rifkin, H., Porte, D., eds.). Elsevier, New York, pp. 154-69.
    166. Lemozy, S., Pucilowska, L. B., and Underwood, L. E. (1994) Reduction of insulin-like growth factor-1 (IGF-1) in protein-restricted rats is associated with differential regulation of IGF-binding protein messenger ribonucleic acids in liver and kidney, and peptides in liver and serum. / Endocrinology 135, 617-23 CrossRef
    167. Straus, D. S. (1994) Nutritional regulation of hormones and growth factors that control mammalian growth / FASEB J. 8, 6-2.
    168. Tobin, B. W., Lewis, J. T., Chen, Z., Tobin, B. L. and Finegood, D. T. (1995) Insulin action in a model of graded insulin secretion using islet transplanted rats. / Transplantation 59, 1-.
    169. Tobin, B. W., Lewis, J. T., Tobin, B. L. and Finegood, D. T. (1995) Insulin action in previously diabetic rats receiving graded numbers of islets of Langerhans. / Transplantation 59, 1464-470.
    170. Tobin, B. W. and Marchello, M. J. (1995) Islet transplantation reverses carcass protein loss in diabetic rats without inducing disproportionate fat accumulation. / diabetologia 38, 881-88.
    171. Tobin, B. W., Welch-Holland, K. R., and Marchello, M. J. (1997) Pancreatic islet transplantation improves body composition, decreases food intake and normalizes feed efficiency in previously diabetic female rats. / J. Nutr. 127, 1191-197.
    172. Weir, G. C. and Bonner-Weir, S. (1998) Islet transplantation as a treatment for diabetes. / J. Am. Optom. Assoc. 69, 727-32.
    173. Shapiro, A. M. J., Lakey, J. R. T., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. / N. Engl. J. Med. 343, 230-37. CrossRef
    174. Shapiro, A. M. J., Ryan, E. A., and Lakey, J. R. T. (2001) Pancreatic islet transplantation in the treatment of diabetes mellitus. / Best Practice Res. Clin. Endocrin. Metab. 15, 241-64. CrossRef
    175. Shapiro, A. M. J. and Lakey, J. R. T. (2000) Future trends in islet transplantation. / Diabetes Tech. Ther. 2, 449-52. CrossRef
    176. Ryan, E. A., Lakey, J. R. T., and Shapiro, A. M. J. (2001) Clinical results after islet transplantation. / J. Invest. Med. 49, 559-62.
    177. Ryan, E. A., Lakey, J. R. T., Rajotte, R. V., Korbutt, G. S., Kin, T., Imes, S., et al. (2001) Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. / Diabetes 50, 710-19. CrossRef
    178. Cornelius, J. G., Tchernev, V., Kao, K. J., and Peck, A. B. (1997) In vitro-generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas. / Horm. Metab. Res. 29(6), 271-77. CrossRef
    179. Ramiya, V. K., Maraist, M., Arfos, K. E., Schatz, D. A., Peck, A. B., and Cornelius, J. G. (2000) Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. / Nat. Med. 6(3), 278-82. CrossRef
    180. Bonner-Weir, S., Taneja, M., Weir, G. C., Tatarkiewicz, K., Song, K.-H., Sharma, A., et al. (2000) In vitro cultivation of human islets from expanded ductal tissue. / Proc. Natl. Acad. Sci. USA 97, 7999-004. CrossRef
    181. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. / Science 292, 1389-393. CrossRef
    182. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., and Martin, F. (2000) Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. / Diabetes 49, 157-62. CrossRef
    183. Soria, B., Skoudy, A., and Martin, F. (2001) From stem cells to beta cells: new strategies in cell therapy of diabetes mellitus. / Diabetologia 4, 407-15. CrossRef
    184. Assady, S., Maor, G., Amit, M., Itskovitz-Eldor, J., Skorecki, K. L., and Tzukerman, M. (2001) Insulin production by human embryonic stem cells. / Diabetes 50, 1691-697. CrossRef
    185. Mankin, H. J. (1982) The response of articular cartilage to mechanical injury. / J. Bone Joint Surg. Am. 64, 460-66.
    186. McDermott, A. G., Langer, F., Pritzker, K. P., and Gross, A. E. (1985) Fresh small-fragment osteochondral allografts: long-term follow-up study on first 100 cases. / Clin. Orthop. 197, 96-02.
    187. Chesterman P. J. and Smith, A. U. (1968) Homotransplantation of articular cartilage and isolated chondrocytes: an experimental study in rabbits. / J. Bone Joint Surg. Br. 50, 184-97.
    188. Bentley, G. and Greer, R. B., III, (1971) Homotransplantation of isolated epiphyseal and articular cartilage chondrocytes into joint surfaces of rabbits. / Nature 230, 385-88. CrossRef
    189. Green, W. T. (1977) Articular cartilage repair: behavior of rabbit chondrocytes during tissue culture and subsequent allografting. / Clin. Orthop. 124, 237-50.
    190. Moskalewski, S. (1991) Transplantation of isolated chondrocytes. / Clin. Orthop. 272, 16-0.
    191. Wakitani, S., Kimura, T., Hirooka, A., Ochi, T., Yoneda, M., Yasui, N., et al. (1989) Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. / J. Bone Joint Surg. Br. 71, 74-0.
    192. Kawabe, N. and Yoshinato, M. (1991) The repair of full thickness articular cartilage defects: immune responses to reparative tissue formed by allogeneic growth plate chondrocytes. / Clin. Orthop. 268, 279-93.
    193. Matsusue, Y., Yamamuro, T., and Hama, H. (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. / Arthroscopy 9, 318-21. CrossRef
    194. Garret, J. C. (1986) Treatment of osteochondral defects of the distal femur with fresh osteochondral allografts: a preliminary report. / Arthroscopy 2, 222-26. CrossRef
    195. Skoog, T. and Johansson, S. H. (1976) The formation of articular cartilage from free perichondrial grafts. / Plast. Reconstr. Surg. 57(1), 1-. CrossRef
    196. Homminga, G. N., Bulstra, S. K., Bouwmeester, P. S., and van der Linden, A. J. (1990) Perichondral grafting for cartilage lesions of the knee. / J. Bone Joint Surg. Br. 72, 1003-007.
    197. Rubak, J. M. (1982) Reconstruction of articular cartilage defects with free periosteal grafts: an experimental study. / Acta. Orthop. Scand. 53, 175-0. CrossRef
    198. O'Driscoll, S. W., Keeley, F. W., and Salter, R. B. (1988) Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion: a follow-up report at one year. / J. Bone Joint Surg. Am. 70, 595-06.
    199. Ritsila, V. A., Santavirta, S., Alhopuro, S., Poussa, M., Jaroma, H., Rubak, J. M., et al. (1994) Periosteal and perichondral grafting in reconstructive surgery. / Clin. Orthop. 302, 259-65.
    200. Caplan, A. I. (1991) Mesenchymal stem cells. / J. Orthop. Res. 9, 641-50. CrossRef
    201. Minas, T. and Neher, S. (1997) Current concepts in the treatment of articular cartilage defects. / Orthopedics 20, 525-38.
    202. Grande, D. A., Pitman, M. I., Peterson, L., Menche, D., and Klein, M. (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. / J. Orthop. Res. 7, 208-18. CrossRef
    203. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., and Peterson, L. (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. / N. Engl. J. Med. 331, 889-95. CrossRef
    204. Brittberg, M., Nilsson, A., Lindahl, A., Ohlsson, C., and Peterson, L. (1996) Rabbit articular cartilage defects treated with autologous cultured chondrocytes. / Clin. Orthop. 326, 270-83. CrossRef
    205. Frenkel, S. R., Toolan, B., Menche, D., Pitman, M. I., and Pachence, J. M. (1997) Chondrocyte transplantation using a collagen bilayer matrix for cartilage repair. / J. Bone Joint Surg. Br. 79, 831-36. CrossRef
    206. Wakitani, S., Goto, T., Pineda, S. J., Young, R. G. Mansour, J. M., Caplan, A. I., et al. (1994) Mesenchymal cell-based repair of large, fullthickness defects of articular cartilage. / J. Bone Joint Surg. Am. 76, 579-92.
    207. Breinan, H. A., Minas, T., Hsu, H.-P., Nehrer, S., Sledge, C. B., and Spector, M. (1997) Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model. / J. Bone Joint Surg. Am. 79, 1439-451.
    208. Kolettas, E., Buluwela, L., Bayliss, M. T., and Muir, H. I. (1995) Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. / J. Cell. Sci. 108, 1991-999.
    209. Grande, D. A., Southerland, S. S., Manji, R., Pate, D. W., Schwartz, R. E., and Lucas, P. A. (1995) Repair of articular cartilage defect using mesenchymal stem cells. / Tiss. Eng. 1, 345-53. CrossRef
    210. Syftestad, G. T. and Caplan, A. I. (1984) A fraction from extracts of demineralized adult bone stimulates the conversion of mesenchymal cells into chondrocytes. / Dev. Biol. 104, 348-56. CrossRef
    211. Sato, S., Rahemtulla, F., Prince, C. W., Tomana, M., and Butler, W. T. (1985) Acidic glycoproteins from bovine compact bone. / Connect. Tiss. Res. 14(1), 51-4.
    212. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. / Nature 227(259), 680-85. CrossRef
    213. Roberts, R. M., Baumbach, G. A., Buhi, W. C., Denny, J. B., Fitzgerald, L. A., Babelyn, S. F., and Horst, M. N. (1984) Analysis of membrane polypeptides by two-dimensional polyacrylamide gel electrophoresis. In: / Molecular and Chemical Characterization of Membrane Receptors (Venter, J., ed.), Alan R. Liss, New York, pp. 61-13.
    214. Ewton, D. Z. and Florini, J. R. (1981) Effects of somatomedins and insulin on myoblast differentiation in vitro. / Dev. Biol. 86, 31-9. CrossRef
    215. Florini, J. R., Roberts, A. B., Ewton, D. Z., Falen, S. L., Flanders, K. C., and Sporn, M. B. (1986) Transforming growth factor-beta: a very potent inhibitor of myoblast differentiation, identical to the differentiation inhibitor secreted by Buffalo rat liver cells. / J. Biol. Chem. 261, 16509-6513.
    216. Florini, J. R., Ewton, D. Z., Falen, S. L., and Van Wyck, J. J. (1986) Biphasic concentration dependency of stimulation of myoblast differentiation by somatomedins. / Am. J. Physiol. 250, C771-C778.
    217. Florini, J. R. and Magri, K. A. (1989) Effects of growth factors on myogenic differentiation. / Am. J. Physiol. 256, C701-C711.
    218. Sejersen, T., Betscholtz, C., Sjolund, M., Heldin, C. H., Estermark, B., and Thyberg, J. (1986) Rat skeletal myoblasts and arterial smooth muscle cells express the gene for the A chain but not the gene for the B chain (c-sis) of platelet-derived growth factor (PDGF) and produce a PDGF-like protein. / Proc. Natl. Acad. Sci. USA 83, 6844-848. CrossRef
    219. Ewton, D. Z., Falen, S. L., and Florini, J. R. (1987) The type-II insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs: pleiotypic actions of the IGFs on myoblasts are apparently mediated by the type-I receptor. / Endocrinology 120, 115-23. CrossRef
    220. Allbrook, D. (1981) Skeletal muscle regeneration. / Muscle Nerve 4, 234-45. CrossRef
    221. Carlson, B. M. (1973) The regeneration of skeletal muscle: a review. / Am. J. Anat. 137, 119-49. CrossRef
    222. Carlson, B. M. (1979) Relationship between tissue and epimorphic regeneration of skeletal muscle. In: / Muscle Regeneration (Mauro, A., ed.). Raven, New York, p. 57.
    223. Carlson, B. M. (1986) Regeneration of entire skeletal muscles. / Fed. Proc. 45, 1456-460.
    224. Carlson, B. M. and Faulkner, J. A. (1983) The regeneration of skeletal muscle fibers following injury: a review. / Med. Sci. Sports Exerc. 15, 187-98. CrossRef
    225. Faulkner, J. A. and Carlson, B. M. (1986) Skeletal muscle regeneration: a historical perspective. / Fed. Proc. 45, 1454-455.
    226. Donovan, C. M. and Faulkner, J. A. (1987) Plasticity of skeletal muscle: regenerating fibers adapt more rapidly than surviving fibers. / J. Appl. Physiol. 62, 2507-511.
    227. Schoen, F. J. (1999) The heart. In: / Pathological Basis of Disease, 6th ed., Cotran, R., Kumar, V., and Collins, T. eds.), W. B. Saunders, Philadelphia, pp. 543-99.
    228. Chiu, R. C.-J. (2001) Theraputic cardiac angiogenesis and myogenesis: the promises and challenges on a new frontier. / J. Thorac. Cardiovasc. Surg. 122(5), 851-52. CrossRef
    229. Marelli, D., Desrosiers, C., El-Alfy, M., Kao, R. L., and Chiu, R. C. (1992) Cell transplantation for myocardial repair: an experimental approach. / Cell. Transplant. 1, 383-90.
    230. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutchenson, K. A., et al. (1997) Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: a potential approach to myocardial repair. / Proc. Assoc. Am. Physicians 109, 245-53.
    231. Koh, G. Y., Soonpaa, M. H., Klug, M. G., and Field, L. (1993) Long-term survival of AT-1 cardiomyocyte grafts in syngenic myocardium. / Am. J. Physiol. 264 ( / Heart Circ. Physiol. 33), H1727-H1733.
    232. Soonpaa, M. H., Koh, G. Y., Klug, M. G., and Field, L. G. (1994) Formation of nascent intercalated disks between grafted cardiomyocytes and host myocardium. / Science 264, 98-01. CrossRef
    233. Klung, M., Soonpaa, M., Koh, G., and Field, L. (1996) Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. / J. Clin. Invest. 98, 216-24. CrossRef
    234. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reddy, M. C., Hutcheson, K. A., et al. (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. / Nat. Med. 4(8), 929-33. CrossRef
    235. Sakai, T., Li, R.-K., Weisel, R. D., Mickle, D. A., Kim, E.-J., Tomita, S., et al. (1999) Autologous heart cell transplantation improves function after myocardial injury. / Ann. Thorac. Surg. 68, 2074-081. CrossRef
    236. Li, R.-K., Weisel, R. D., Mickle, D. A., Jia, Z.-Q., Kim, E. J., Sakai, T., et al. (2000) Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. / J. Thorac. Cardiovasc. Surg. 119, 62-8. CrossRef
    237. Reincke, H., Zhang, M., Bartosek, T., and Murry, C. E. (1999) Survival integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. / Circulation 100, 193-02.
    238. Weksler, B., Ng, B., Lenert, J., and Burt, M. (1994) A simplified method for endotracheal intubation in the rat. / J. Appl. Physiol. 76(4), 1823-825.
    239. Price, R. L. Chintanowonges, C., Shiraishi, I., Borg, T. K., and Terracio, L. (1996) Local and regional variations in myofibrillar patterns in looping rat hearts. / Anat. Rec. 245, 83. CrossRef
    240. Couffinhal, T., Kearney, M., Sullivan, A., Silver, M., Tsurumi, Y., and Isner, J. M. (1997) Histochemical staining following LacZ gene transfert underestimates transfection efficiency. / Hum. Gene Ther. 8, 929-34.
    241. Saito, T., Dennis, J. E., Lennon, D. P., Young, R. G., and Caplan, A. I. (1995) Myogenic expression of mesenchymal stem cells within myotubes of / mdx mice in vitro and in vivo. / Tiss. Eng. 1, 327-43. CrossRef
    242. Deasy, B. M., Jankowski, R. J., and Huard, J. (2001) Muscle-derived stem cells: characterization and potential for cell-mediated therapy. / Blood Cells Mol. Dis. 27, 924-33. CrossRef
    243. Jankowski, R. J., Haluszczak, C., Trucco, M., and Kuard, J. (2001) Flow cytometric characterization of myogenic cell populations obtained via the preplate technique: potential for rapid isolation of muscle-derived stem cells. / Hum. Gene Ther. 12, 619-28. CrossRef
    244. Dent, C. L. and Latchman, D. S. (1993) DNA mobility shift assays. In / Transcription Factors: A Practical Approach (Latchman, D.S., ed.). Oxford University Press, New York, pp. 1-6.
    245. Callaerts, P., Halder, G., and Gehring, W. J. (1997) / PAX-6 in development and evolution. / Annu. Rev. Neurosci. 20, 483-32. CrossRef
    246. Vitalis, T., Cases, O., Engelkamp, D., Verney, C., and Price, D. J. (2000) Defect of tyrosine hydroxylase-immunoreactive neurons in the brains of mice lacking the transcription factor / Pax6. / J. Neurosci. 20, 6501-516.
    247. Mastick, G. S. and Andrews, G. L. (2001) / Pax6 regulates the identity of embryonic diencephalic neurons. / Mol. Cell. Neurosci. 17, 190-07. CrossRef
    248. Wright, W. E., Binder, M., and Funk, W. (1991) Cyclic Amplification Selection of Targets (CASTing) for the myogenin consensus binding site. / Mol. Cell. Biol 11, 4104-110.
    249. Kraus, B. and Pette, D. (1997) Quantification of MyoD, myogenin, MRF4 and Id-1 by reverse transcriptase polymerase chain reaction in rat muscles: effects of hypothyroidism and chronic low-frequency stimulation. / Eur. J. Biochem. 247, 98-06. CrossRef
    250. Skalli, O., Ropraz, P., Trzeciak, A., Benzonana, G., Gillessen, D., and Gabbiani, G. (1986) A monoclonal antibody against α-smooth muscle actin: a new probe for smooth muscle differentiation. / J. Cell. Biol. 103, 2787-796. CrossRef
    251. Alexander, J. E., Hunt, D. F., Lee, M. K., Shabanowitz, J., Michel, H., Berlin, S. C., et al. (1991) Characterization of posttranslational modifications in neuron-specific class III β-tubulin by mass spectrometry. / PNAS 88, 4685-689. CrossRef
    252. Dotti, C. G., Banker, G. A., and Binder, L. I. (1987) The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. / Neuroscience 1, 121-30. CrossRef
    253. Debus, E., Weber, K., and Osborn, M. (1983) Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. / Differentiation 25, 193-03. CrossRef
    254. Shaw, G., Osborn, M., and Weber, K. (1986) Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments. / Eur. J. Cell. Biol. 42, 1-.
    255. Beck, K. D., Powell-Braxton, L., Widmer, H.-R., Valverde, J., and Hefti, F. (1995) / Igf1 Gene disruption results in reduced brain size, CNS, hypomyleination and loss of hippocampal granule and striatal parvalbumin-containing neurons. / Neuron 14, 717-30. CrossRef
    256. Justicia, C., Gabriel, C., and Planas, A. M. (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak 1 and Stat 3 in astrocytes. / Glia 30, 253-70. CrossRef
    257. Zhang, S. C. (2001) Defining glial cells during CNS development. / Nat. Rev. Neurosci. 2, 840-43. CrossRef
    258. Spinkle, T. J., Agee, J. F., Tippins, R. B., Chamberlain, C. R., Faguet, G. B., and DeVries, G. H. (1987) Monoclonal antibody production to human and bovine 2-3-cyclic nucleotide 3-phosphodiesterase (CNPase): high-specificity recognition in whole brain acetone powder and conservation of sequence between CNP1 and CNP2. / Brain Res. 426, 349-57. CrossRef
    259. Asahara, T., Kalka, C., and Isner, J. M. (2000) Stem cell therapy and gene transfer for regeneration. / Gene Ther. 7, 451-57. CrossRef
    260. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., et al. (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. / Proc. Natl. Acad. Sci. USA 97, 3422-427. CrossRef
    261. Masuda, H., Kalka, C., and Asahara, T. (2000) Endothelial progenitor cells for regeneration. / Hum. Cell. 13, 153-60.
    262. Murayama, T., Tepper, O. M., Silver, M., Ma, H., Losordo, D. W., Isner, J. M., et al. (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. / Exp. Hematol. 8, 967-72. CrossRef
  • 作者单位:Henry E. Young (1) (2)
    Cecile Duplaa (3)
    Marina Romero-Ramos (4)
    Marie-Francoise Chesselet (4)
    Patrick Vourc'h (4)
    Michael J. Yost (5)
    Kurt Ericson (5)
    Louis Terracio (6)
    Takayuki Asahara (7) (8)
    Haruchika Masuda (7) (8)
    Sayaka Tamura-Ninomiya (7) (8)
    Kristina Detmer (1)
    Robert A. Bray (9)
    Timothy A. Steele (10)
    Douglas Hixson (11)
    Mohammad el-Kalay (12)
    Brain W. Tobin (1) (2)
    Roy D. Russ (1)
    Michael N. Horst (1)
    Julie A. Floyd (1)
    Nicholas L. Henson (1)
    Kristina C. Hawkins (1)
    Jaime Groom (1)
    Amar Parikh (1)
    Lisa Blake (1)
    Laura J. Bland (1)
    Angela J. Thompson (1)
    Amy Kirincich (5)
    Catherine Moreau (3)
    John Hudson (13)
    Frank P. Bowyer III (2)
    T. J. Lin (14)
    Asa C. Black Jr. (1) (14)

    1. Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA
    2. Department of Pediatrics, Mercer University School of Medicine, 1550 College Street, Macon, GA
    3. INSERM U441, Avenue du Haut Leveque, France
    4. Department of Neurology, UCLA School of Medicine, Reed Neurological Research Center, Los Angeles, GA
    5. Department of Surgery, University of South Carolina School of Medicine, Columbia, SC
    6. New York University College of Dentistry, New York, NY
    7. Cardiovascular Research and Medicine, Tufts University School of Medicine, Elizabeth's Medical Center, Boston, MA
    8. Kobe Institute of Biomedical Research and Innovation/RIKEN Center of Developmental Biology, Chuo, Kobe, Japan
    9. Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
    10. Des Moines University-Osteopathic Medical Center, Des Moines, IA
    11. Department of Medicine, Brown University, Providence, RI
    12. MorphoGen Pharmaceuticals, Inc., San Diego, CA
    13. Department of Internal Medicine, Mercer University School of Medicine, 1550 College Street, Macon, GA
    14. Department of Obstetrics and Gynecology, Mercer University School of Medicine, 1550 College Street, Macon, GA
文摘
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50-0 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700