Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers
详细信息    查看全文
  • 作者:Ying Yu (1)
    Hong Yang (1)
    Jun Li (2)
    Peipei Zhang (1)
    Beibei Wu (3)
    Binglin Zhu (1)
    Yan Zhang (1)
    Weihuan Fang (1) whfang@zju.edu.cn
  • 关键词:Vibrio parahaemolyticus – ; Type VI secretion system – ; Adhesion
  • 刊名:Archives of Microbiology
  • 出版年:2012
  • 出版时间:October 2012
  • 年:2012
  • 卷:194
  • 期:10
  • 页码:827-835
  • 全文大小:404.3 KB
  • 参考文献:1. Alam MJ, Tomochika KI, Miyoshi SI, Shinoda S (2002) Environmental investigation of potentially pathogenic Vibrio parahaemolyticus in the Seto-Inland Sea, Japan. FEMS Microbiol Lett 208:83–87
    2. Bernard CS, Brunet YR, Gueguen E, Cascales E (2010) Nooks and crannies in type VI secretion regulation. J Bacteriol 192:3850–3860
    3. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8
    4. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104
    5. Burdette DL, Yarbrough ML, Orvedahl A, Gilpin CJ, Orth K (2008) Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis. Proc Natl Acad Sci USA 105:12497–12502
    6. Cascales E (2008) The type VI secretion tool kit. EMBO Rep 9:735–741
    7. Chao G, Jiao X, Zhou X, Wang F, Yang Z, Huang J, Pan Z, Zhou L, Qian X (2010) Distribution of genes encoding four pathogenicity islands (VPaIs), T6SS, biofilm, and type I pilus in food and clinical strains of Vibrio parahaemolyticus in China. Foodborne Pathog Dis 7:649–658
    8. Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7:265–276
    9. Honda T, Ni Y, Miwatani T (1988) Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infect Immun 56:961–965
    10. Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T, Honda T, Iida T (2008) Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect Immun 76:1016–1023
    11. Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8:2–6
    12. Kaper JB, Campen RK, Seidler RJ, Baldini MM, Falkow S (1984) Cloning of the thermostable direct or Kanagawa phenomenon associated hemolysin of Vibrio parahaemolyticus. Infect Immun 45:290–292
    13. Krachler AM, Orth K (2011) Functional characterization of the interaction between bacterial adhesin multivalent adhesion molecule 7 (MAM7) protein and its host cell ligands. J Biol Chem 286:38939–38947
    14. Lozano-Le贸n A, Torres J, Osorio CR, Mart铆nez-Urtaza J (2003) Identification of tdh positive Vibrio parahaemolyticus from an outbreak associated with raw oyster consumption in Spain. FEMS Microbiol Lett 226:281–284
    15. Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordo帽ez CL, Lory S, Walz T, Joachimiak A, Mekalanos JJ (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530
    16. Nishibuchi M, Kaper BJ (1995) Thermostable direct hemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 63:2093–2099
    17. Nishibuchi M, Hill WE, Zon G, Payne WL, Kaper JB (1986) Synthetic oligodeoxyribonucleotide probes to detect Kanagawa phenomenon-positive Vibrio parahaemolyticus. J Clin Microbiol 23:1091–1095
    18. Okada N, Iida T, Park KS, Goto N, Yasunaga T, Hiyoshi H, Matsuda S, Kodama T, Honda T (2009) Identification and characterization of a novel type III secretion system in trh-positive Vibrio parahaemolyticus strain TH3996 reveal genetic lineage and diversity of pathogenic machinery beyond the species level. Infect Immun 77:904–913
    19. Park KS, Ono T, Rokuda M, Jang MH, Okada K, Iida T, Honda T (2004) Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72:6659–6665
    20. Parsons DA, Heffron F (2005) sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73:4338–4345
    21. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103:1528–1533
    22. Purcell M, Shuman HA (1998) The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infect Immun 66:2245–2255
    23. Raimondi F, Kao JPY, Fiorentini C, Fabbri A, Donelli G, Gasparini N, Rubino A, Fasano A (2000) Enterotoxicity and cytotoxicity of Vibrio parahaemolyticus thermostable direct hemolysin in in vitro systems. Infect Immun 68:3180–3185
    24. Robert-Pillot A, Guenole A, Lesne J, Delesmont R, Fournier JM, Quilici ML (2004) Occurrence of the tdh and trh genes in Vibrio parahaemolyticus isolates from waters and raw shellfish collected in two France coastal areas and from seafood imported into France. Int J Food Microbiol 91:319–325
    25. Sakarya S, G枚kt眉rk C, 脰zt眉rk T, Ertugrul MB (2010) Sialic acid is required for nonspecific adherence of Salmonella enterica ssp. enteriaca serovar Typhi on Caco-2 cell. FEMS Immunol Med Microbiol 58:330–335
    26. Segal G, Purcell M, Shuman HA (1998) Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc Natl Acad Sci USA 95:1669–1674
    27. Sexton JA, Vogel JP (2002) Type IVB secretion by intracellular pathogens. Traffic 3:178–185
    28. Shirai H, Ito H, Hirayama T, Nakamoto Y, Nakabayashi N, Kumagai K, Takeda Y, Nishibuchi M (1990) Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect Immun 58:3568–3573
    29. Shrivastava S, Mande SS (2008) Identification and functional characterization of gene components of Type VI secretion system in bacterial genomes. PLoS ONE 3:e2955
    30. Suarez G, Sierra JC, Sha J, Wang S, Erova TE, Fadl AA, Foltz SM, Horneman AJ, Chopra AK (2008) Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44:344–361
    31. Vongxay K, He X, Cheng S, Zhou X, Shen B, Zhang G, Zhang Y, Fang W (2006) Prevalence of Vibrio parahaemolyticus in seafood and their processing environments as detected by duplex PCR. J Sci Food Agric 86:1871–1877
    32. Vongxay K, Wang S, Zhang X, Wu B, Hu H, Pan Z, Chen S, Fang W (2008) Pathogenic characterization of Vibrio parahaemolyticus isolates from clinical and seafood sources. Int J Food Microbiol 126:71–75
    33. Wang Q, Liu Q, Ma Y, Rui H, Zhang Y (2007) LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus. J Appl Microbiol 103:1525–1534
    34. Weber B, Hasic M, Chen C, Wai SN, Milton DL (2009) Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol 11:3018–3028
    35. Yeung PS, Boor KJ (2004) Epidemiology, pathogenesis, and prevention of foodborne Vibrio parahaemolyticus infections. Foodborne Pathog Dis 1:74–89
    36. Zheng J, Leung KY (2007) Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66:1192–1206
    37. Zheng J, Shin OS, Cameron DE, Mekalanos JJ (2010) Quorum sensing and a lobal regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci USA 107:21128–21133
    38. Zhou X, Shah DH, Konkel ME, Call DR (2008) Type III secretion system 1 genes in Vibrio parahaemolyticus are positively regulated by ExsA and negatively regulated by ExsD. Mol Microbiol 69:747–764
  • 作者单位:1. Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058 China2. College of Animal Science and Technology, Southwest University, Chongqing, 400716 China3. Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051 China
  • ISSN:1432-072X
文摘
Analysis of the genome sequence of Vibrio parahaemolyticus reveals two IcmF family genes in putative type VI secretion system (vpT6SS) clusters in chromosomes 1 (icmF1) and 2 (icmF2). The icmF1 gene is present in majority of clinical isolates (87.5 %), but has a low fraction (25.0 %) in environmental isolates. However, icmF2 is contained in all strains of both clinical and environmental sources. Deletion of either icmF1 or hcp1 significantly reduced bacterial adhesion to Caco-2 cells or HeLa monolayers. However, the ΔicmF2 and Δhcp2 mutants showed decreased adhesion only to HeLa monolayers. Western blot analysis showed that Hcp2 was present both in the supernatant and pellet samples in the wild-type strain, but only in the pellet of the ΔicmF2 mutant, indicating that Hcp2 is a translocon of T6SS2. Although vpT6SS1 might be functional in cellular adhesion, the putative translocon Hcp1 was not detectable. Quantitative PCR revealed 10-fold and 17-fold less transcripts of hcp1 and icmF1 mRNA than those of hcp2 and icmF2 accordingly. Thus, we postulate that the putative vpT6SS systems contribute to adhesion of V. parahaemolyticus to host cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700