Crystal structure of secretory protein Hcp3 from Pseudomonas aeruginosa
详细信息    查看全文
  • 作者:Jerzy Osipiuk (1)
    Xiaohui Xu (2)
    Hong Cui (2)
    Alexei Savchenko (2)
    Aled Edwards (2) (3)
    Andrzej Joachimiak (1) (4)
  • 关键词:Type VI (T6SS) secretion system ; Hcp3 ; Hcp1 ; X ; ray crystallography ; Structural genomics
  • 刊名:Journal of Structural and Functional Genomics
  • 出版年:2011
  • 出版时间:March 2011
  • 年:2011
  • 卷:12
  • 期:1
  • 页码:21-26
  • 全文大小:823KB
  • 参考文献:1. Desvaux M et al (2009) Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17(4):139鈥?45 CrossRef
    2. Goodman AL et al (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in / Pseudomonas aeruginosa. Dev Cell 7(5):745鈥?54 CrossRef
    3. Ventre I et al (2006) Multiple sensors control reciprocal expression of / Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103(1):171鈥?76 CrossRef
    4. Mougous JD et al (2007) Threonine phosphorylation post-translationally regulates protein secretion in / Pseudomonas aeruginosa. Nat Cell Biol 9(7):797鈥?03 CrossRef
    5. Boyer F et al (2009) Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics 10:104 CrossRef
    6. Mougous JD et al (2006) A virulence locus of / Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526鈥?530 CrossRef
    7. Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system: translocation of effectors and effector-domains. Curr Opin Microbiol 12(1):11鈥?7 CrossRef
    8. Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner鈥檚 guide. Curr Opin Microbiol 11(1):3鈥? CrossRef
    9. Schell MA et al (2007) Type VI secretion is a major virulence determinant in / Burkholderia mallei. Mol Microbiol 64(6):1466鈥?485 CrossRef
    10. Pell LG et al (2009) The phage lambda major tail protein structure reveals a common evolution for long-tailed phages and the type VI bacterial secretion system. Proc Natl Acad Sci USA 106(11):4160鈥?165 CrossRef
    11. Leiman PG et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106(11):4154鈥?159 CrossRef
    12. Ballister ER et al (2008) In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci USA 105(10):3733鈥?738 CrossRef
    13. Filloux A (2009) The type VI secretion system: a tubular story. EMBO J 28(4):309鈥?10 CrossRef
    14. Korolev S et al (2002) Autotracing of / Escherichia coli acetate CoA-transferase alpha-subunit structure using 3.4 A MAD and 1.9 A native data. Acta Crystallogr D Biol Crystallogr 58(Pt 12):2116鈥?121 CrossRef
    15. Minor W et al (2006) HKL-3000: the integration of data reduction and structure solution鈥揻rom diffraction images to an initial model in minutes. Acta Crystallogr D Biol Crystallogr 62(Pt 8):859鈥?66 CrossRef
    16. Terwilliger TC (2003) SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol 374:22鈥?7 CrossRef
    17. Morris RJ, Perrakis A, Lamzin VS (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol 374:229鈥?44 CrossRef
    18. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1):2126鈥?132
    19. Adams PD et al (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58(Pt 11):1948鈥?954 CrossRef
    20. Hooft RW et al (1996) Errors in protein structures. Nature 381(6580):272 CrossRef
    21. Davis IW et al (2004) MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes / . Nucleic Acids Res 32(Web Server issue):W615鈥揥619
    22. Jobichen C et al (2010) Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda / . PLoS One 5(9):e12910
  • 作者单位:Jerzy Osipiuk (1)
    Xiaohui Xu (2)
    Hong Cui (2)
    Alexei Savchenko (2)
    Aled Edwards (2) (3)
    Andrzej Joachimiak (1) (4)

    1. Argonne National Laboratory, Biosciences Division, Midwest Center for Structural Genomics and Structural Biology Center, 9700 S. Cass Ave., Argonne, IL, 60439, USA
    2. University of Toronto, Structural Genomics Consortium, Toronto, Canada
    3. Clinical Genomics Centre/Proteomics, University Health Network, 200 Elizabeth St., Toronto, ON, M5G 1L7, Canada
    4. Department of Biochemistry and Molecular Biology, University of Chicago, 920 E. 58th St., Chicago, IL, 60637, USA
文摘
The Type VI secretion pathway transports proteins across the cell envelope of Gram-negative bacteria. Pseudomonas aeruginosa, an opportunistic Gram-negative bacterial pathogen infecting humans, uses the type VI secretion pathway to export specific effector proteins crucial for its pathogenesis. The HSI-I virulence locus encodes for several proteins that has been proposed to participate in protein transport including the Hcp1 protein, which forms hexameric rings that assemble into nanotubes in vitro. Two Hcp1 paralogues have been identified in the P. aeruginosa genome, Hsp2 and Hcp3. Here, we present the structure of the Hcp3 protein from P. aeruginosa. The overall structure of the monomer resembles Hcp1 despite the lack of amino-acid sequence similarity between the two proteins. The monomers assemble into hexamers similar to Hcp1. However, instead of forming nanotubes in head-to-tail mode like Hcp1, Hcp3 stacks its rings in head-to-head mode forming double-ring structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700