Genomic and secretomic insight into lignocellulolytic system of an endophytic bacterium Pantoea ananatis Sd-1
详细信息    查看全文
  • 作者:Jiangshan Ma ; Keke Zhang ; Hongdong Liao ; Stanton B. Hector
  • 关键词:Endophytic bacterium ; Pantoea ananatis Sd ; 1 ; Lignocellulose degradation ; CAZy ; Quantitative real ; time PCR ; Secretome ; Enzymes activities
  • 刊名:Biotechnology for Biofuels
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:9
  • 期:1
  • 全文大小:1,936 KB
  • 参考文献:1.Demain AL. Biosolutions to the energy problem. J Ind Microbiol Biotechnol. 2009;36(3):319–32. doi:10.​1007/​s10295-008-0521-8 .CrossRef <br>2.Jørgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref. 2007;1(2):119–34. doi:10.​1002/​bbb.​4 .CrossRef <br>3.Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28(12):1883–96. doi:10.​1039/​c1np00042j .CrossRef <br>4.Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506–77. doi:10.​1128/​mmbr.​66.​3.​506-577.​2002 .CrossRef <br>5.Pandey S, Singh S, Yadav AN, Nain L, Saxena AK. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem. 2013;77(7):1474–80. doi:10.​1271/​bbb.​130121 .CrossRef <br>6.Woo HL, Hazen TC, Simmons BA, DeAngelis KM. Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol. 2014;37(1):60–7. doi:10.​1016/​j.​syapm.​2013.​10.​001 .CrossRef <br>7.Dam P, Kataeva I, Yang SJ, Zhou F, Yin Y, Chou W, et al. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 2011;39(8):3240–54. doi:10.​1093/​nar/​gkq1281 .CrossRef <br>8.Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, et al. Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One. 2009;4(4):e5271. doi:10.​1371/​journal.​pone.​0005271 .CrossRef <br>9.Book AJ, Lewin GR, McDonald BR, Takasuka TE, Doering DT, Adams AS, et al. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl Environ Microbiol. 2014;80(15):4692–701. doi:10.​1128/​AEM.​01133-14 .CrossRef <br>10.Chen S, Wilson DB. Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol. 2007;189(17):6260–5. doi:10.​1128/​JB.​00584-07 .CrossRef <br>11.Adav SS, Ng CS, Arulmani M, Sze SK. Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res. 2010;9(6):3016–24. doi:10.​1021/​pr901174z .CrossRef <br>12.Adav SS, Cheow ES, Ravindran A, Dutta B, Sze SK. Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass. J Proteomics. 2012;75(12):3694–706. doi:10.​1016/​j.​jprot.​2012.​04.​031 .CrossRef <br>13.Kataeva I, Foston MB, Yang S-J, Pattathil S, Biswal AK, Poole Ii FL, et al. Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ Sci. 2013;6(7):2186. doi:10.​1039/​c3ee40932e .CrossRef <br>14.Ventorino V, Aliberti A, Faraco V, Robertiello A, Giacobbe S, Ercolini D, et al. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application. Sci Rep. 2015;5:8161. doi:10.​1038/​srep08161 .CrossRef <br>15.Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition. Oikos. 1995;73:274–6. doi:10.​2307/​3545919 .CrossRef <br>16.Purahong W, Hyde KD. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers. 2010;47(1):1–7. doi:10.​1007/​s13225-010-0083-8 .CrossRef <br>17.Koide K, Osono T, Takeda H. Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience. 2005;46(5):280–6. doi:10.​1007/​S10267-005-0247-7 .CrossRef <br>18.Xiong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW, et al. Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol. 2014;58(2):123–9. doi:10.​1111/​lam.​12163 .CrossRef <br>19.Coutinho TA, Venter SN. Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol. 2009;10(3):325–35. doi:10.​1111/​j.​1364-3703.​2009.​00542.​x .CrossRef <br>20.Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, et al. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J. 2011;5(8):1323–31. doi:10.​1038/​ismej.​2011.​14 .CrossRef <br>21.De Maayer P, Chan WY, Rubagotti E, Venter SN, Toth IK, Birch PR, et al. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genom. 2014;15:404. doi:10.​1186/​1471-2164-15-404 .CrossRef <br>22.Chandra R, Singh R. Decolourisation and detoxification of rayon grade pulp paper mill effluent by mixed bacterial culture isolated from pulp paper mill effluent polluted site. Biochem Eng J. 2012;61:49–58. doi:10.​1016/​j.​bej.​2011.​12.​004 .CrossRef <br>23.Dastager S, Deepa CK, Pandey A. Isolation and characterization of high-strength phenol-degrading novel bacterium of the Pantoea genus. Bioremediat J. 2009;13(4):171–9. doi:10.​1080/​1088986090334142​0 .CrossRef <br>24.Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fukui S, et al. Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. J Bacteriol. 2012;194(2):534–5. doi:10.​1128/​JB.​06254-11 .CrossRef <br>25.Deangelis KM, Sharma D, Varney R, Simmons B, Isern NG, Markilllie LM, et al. Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol. 2013;4:280. doi:10.​3389/​fmicb.​2013.​00280 .CrossRef <br>26.Liu D, Li J, Zhao S, Zhang R, Wang M, Miao Y, et al. Secretome diversity and quantitative analysis of cellulolytic Aspergillus fumigatus Z5 in the presence of different carbon sources. Biotechnol Biofuels. 2013;6(1):149. doi:10.​1186/​1754-6834-6-149 .CrossRef <br>27.Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol. 2008;35(5):377–91. doi:10.​1007/​s10295-008-0327-8 .CrossRef <br>28.Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, et al. Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA. 2009;106(6):1954–9. doi:10.​1073/​pnas.​0809575106 .CrossRef <br>29.Bugg TD, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22(3):394–400. doi:10.​1016/​j.​copbio.​2010.​10.​009 .CrossRef <br>30.Brown ME, Chang MC. Exploring bacterial lignin degradation. Curr Opin Chem Biol. 2014;19:1–7. doi:10.​1016/​j.​cbpa.​2013.​11.​015 .CrossRef <br>31.Mathews SL, Pawlak J, Grunden AM. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl Microbiol Biotechnol. 2015;99(7):2939–54. doi:10.​1007/​s00253-015-6471-y .CrossRef <br>32.Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels. 2013;6(1):41. doi:10.​1186/​1754-6834-6-41 .CrossRef <br>33.Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG. Novel enzymes for the degradation of cellulose. Biotechnol Biofuels. 2012;5(1):1–13. doi:10.​1186/​1754-6834-5-45 .CrossRef <br>34.Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J. 2004;382:769–81. doi:10.​1042/​BJ20040892 .CrossRef <br>35.Stevenson DM, Weimer PJ. Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture. Appl Environ Microbiol. 2005;71(8):4672–8. doi:10.​1128/​AEM.​71.​8.​4672-4678.​2005 .CrossRef <br>36.Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels. 2010;1(2):323–41. doi:10.​4155/​bfs.​09.​25 .CrossRef <br>37.Lochner A, Giannone RJ, Rodriguez M Jr, Shah MB, Mielenz JR, Keller M, et al. Use of label-free quantitative proteomics to distinguish the secreted cellulolytic systems of Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Appl Environ Microbiol. 2011;77(12):4042–54. doi:10.​1128/​AEM.​02811-10 .CrossRef <br>38.Sun J, Tian C, Diamond S, Glass NL. Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell. 2012;11(4):482–93. doi:10.​1128/​EC.​05327-11 .CrossRef <br>39.Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genom. 2013;14:274. doi:10.​1186/​1471-2164-14-274 .CrossRef <br>40.Navarrete M, Callegari E, Eyzaguirre J. The effect of acetylated xylan and sugar beet pulp on the expression and secretion of enzymes by Penicillium purpurogenum. Appl Microbiol Biotechnol. 2012;93(2):723–41. doi:10.​1007/​s00253-011-3744-y .CrossRef <br>41.Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14(4):435–43. doi:10.​1016/​j.​pbi.​2011.​04.​004 .CrossRef <br>42.Tiwari R, Singh S, Nain PK, Rana S, Sharma A, Pranaw K, et al. Harnessing the hydrolytic potential of phytopathogenic fungus Phoma exigua ITCC 2049 for saccharification of lignocellulosic biomass. Bioresour Technol. 2013;150:228–34. doi:10.​1016/​j.​biortech.​2013.​10.​007 .CrossRef <br>43.Tiwari R, Singh S, Singh N, Adak A, Rana S, Sharma A, et al. Unwrapping the hydrolytic system of the phytopathogenic fungus Phoma exigua by secretome analysis. Process Biochem. 2014;49(10):1630–6. doi:10.​1016/​j.​procbio.​2014.​06.​023 .CrossRef <br>44.Masai E, Katayama Y, Kubota S, Kawai S, Yamasaki M, Morohoshi N. A bacterial enzyme degrading the model lignin compound β-etherase is a member of the glutathione-S-transferase superfamily. FEBS Lett. 1993;323(1):135–40. doi:10.​1016/​0014-5793(93)81465-C .CrossRef <br>45.Masai E, Kubota S, Katayama Y, Kawai S, Yamasaki M, Morohoshi N. Characterization of the C alpha-dehydrogenase gene involved in the cleavage of beta-aryl ether by Pseudomonas paucimobilis. Biosci Biotechnol Biochem. 1993;57(10):1655–9. doi:10.​1271/​bbb.​57.​1655 .CrossRef <br>46.Colpa DI, Fraaije MW, van Bloois E. DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol. 2014;41(1):1–7. doi:10.​1007/​s10295-013-1371-6 .CrossRef <br>47.Majumdar S, Lukk T, Solbiati JO, Bauer S, Nair SK, Cronan JE, et al. Roles of small laccases from Streptomyces in lignin degradation. Biochemistry. 2014;53(24):4047–58. doi:10.​1021/​bi500285t .CrossRef <br>48.Ihssen J, Reiss R, Luchsinger R, Thony-Meyer L, Richter M. Biochemical properties and yields of diverse bacterial laccase-like multicopper oxidases expressed in Escherichia coli. Sci Rep. 2015;5:10465. doi:10.​1038/​srep10465 .CrossRef <br>49.Potumarthi R, Baadhe RR, Nayak P, Jetty A. Simultaneous pretreatment and saccharification of rice husk by Phanerochete chrysosporium for improved production of reducing sugars. Bioresour Technol. 2013;128:113–7. doi:10.​1016/​j.​biortech.​2012.​10.​030 .CrossRef <br>50.Jing D. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization. Bioresour Technol. 2010;101(19):7592–7. doi:10.​1016/​j.​biortech.​2010.​04.​087 .CrossRef <br>51.Shi X, Liu Q, Ma J, Liao H, Xiong X, Zhang K, et al. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities. Biotechnol Lett. 2015;37(11):2279–88. doi:10.​1007/​s10529-015-1914-1 .CrossRef <br>52.Zamocky M, Hallberg M, Ludwig R, Divne C, Haltrich D. Ancestral gene fusion in cellobiose dehydrogenases reflects a specific evolution of GMC oxidoreductases in fungi. Gene. 2004;338(1):1–14. doi:10.​1016/​j.​gene.​2004.​04.​025 .CrossRef <br>53.Prongjit M, Sucharitakul J, Palfey BA, Chaiyen P. Oxidation mode of pyranose 2-oxidase is controlled by pH. Biochemistry. 2013;52(8):1437–45. doi:10.​1021/​bi301442x .CrossRef <br>54.Baldrian P, Valaskova V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev. 2008;32(3):501–21. doi:10.​1111/​j.​1574-6976.​2008.​00106.​x .CrossRef <br>55.Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257–68. doi:10.​1351/​pac198759020257 .CrossRef <br>56.Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992;23(3):257–70. doi:10.​1016/​0168-1656(92)90074-J .CrossRef <br>57.Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–8. doi:10.​1021/​ac60147a030 .CrossRef <br>58.Perry JD, Morris KA, James AL, Oliver M, Gould FK. Evaluation of novel chromogenic substrates for the detection of bacterial beta-glucosidase. J Appl Microbiol. 2007;102(2):410–5. doi:10.​1111/​j.​1365-2672.​2006.​03096.​x .CrossRef <br>59.Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, et al. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels. 2013;6(1):1. doi:10.​1186/​1754-6834-6-1 .CrossRef <br>60.Nakagawa Y, Sakamoto Y, Kikuchi S, Sato T, Yano A. A chimeric laccase with hybrid properties of the parental Lentinula edodes laccases. Microbiol Res. 2010;165(5):392–401. doi:10.​1016/​j.​micres.​2009.​08.​006 .CrossRef <br>61.Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40(Web Server issue):W445–51. doi:10.​1093/​nar/​gks479 .CrossRef <br>62.Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490–5. doi:10.​1093/​nar/​gkt1178 .CrossRef <br>63.Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6. doi:10.​1038/​nmeth.​1701 .CrossRef <br>64.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8. doi:10.​1006/​meth.​2001.​1262 .CrossRef <br>65.Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1(6):2856–60. doi:10.​1038/​nprot.​2006.​468 .CrossRef <br>
  • 作者单位:Jiangshan Ma (1) <br> Keke Zhang (1) <br> Hongdong Liao (1) <br> Stanton B. Hector (2) (4) <br> Xiaowei Shi (1) <br> Jianglin Li (3) <br> Bin Liu (1) <br> Ting Xu (1) <br> Chunyi Tong (1) <br> Xuanming Liu (1) <br> Yonghua Zhu (1) <br><br>1. Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410008, Hunan, People’s Republic of China <br> 2. Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa <br> 4. DNA Sequencing Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa <br> 3. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, 410008, Hunan, People’s Republic of China <br>
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology<br>Plant Breeding/Biotechnology<br>Renewable and Green Energy<br>Environmental Engineering/Biotechnology<br>
  • 出版者:BioMed Central
  • ISSN:1754-6834
文摘
Background Exploring microorganisms especially bacteria associated with the degradation of lignocellulosic biomass shows great potentials in biofuels production. The rice endophytic bacterium Pantoea ananatis Sd-1 with strong lignocellulose degradation capacity has been reported in our previous study. However, a comprehensive analysis of its corresponding degradative system has not yet been conducted. The aim of this work is to identify and characterize the lignocellulolytic enzymes of the bacterium to understand its mechanism of lignocellulose degradation and facilitate its application in sustainable energy production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700