Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis
详细信息    查看全文
  • 作者:Islam S. Syed ; Akbari Pedram ; Walid A. Farhat
  • 关键词:Sonic hedgehog signaling ; Regenerative medicine ; Bladder cancer
  • 刊名:Current Urology Reports
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:17
  • 期:2
  • 全文大小:491 KB
  • 参考文献:1.American Cancer Society; 2015.
    2.Malkowicz S-B, Van Poppel H, Mickisch G, et al. Muscle invasive urothelial carcinoma of the bladder. Urology. 2007;69:3–16.CrossRef PubMed
    3.Wu X-R. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5:713–25.CrossRef PubMed
    4.Clark M-F, Dick J-E, Dirks P-B, et al. Cancer stem cells-perspective on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.CrossRef
    5.Dancik G-M, Owens C-R, Iczkowski K-A, Theodorescu D. A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells. 2014;32:974–82.PubMedCentral CrossRef PubMed
    6.Al-Hajj M, Wicha M-S, Hernandez B, Morrison S-J, Clarke M-F. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.PubMedCentral CrossRef PubMed
    7.Singh S-K, Hawkins C, Clarke I-D, Squire J-A, Bayani J, Hide T, et al. Identification of human brain tumor initiating cells. Nature. 2004;432:396–401.CrossRef PubMed
    8.Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.CrossRef PubMed
    9.Collins A-T, Berry P-A, Hyde C, Stower M-J, Maitland N-J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946–51.CrossRef PubMed
    10.Hermann P-C, Huber S-L, Herrier T, Aicher A, Ellwart J-W, Guba M, et al. Distinct population of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.CrossRef PubMed
    11.Mani S-A, Guo W, Liao M-J, Eaton E-N, Ayyanan A, Zhou A-Y, et al. The epithelial-to-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.PubMedCentral CrossRef PubMed
    12.Volkmer J-P, Sahoo D, Chin R-K, Ho P-L, Tang C, Kurtova A, et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci U S A. 2012;109:2078–83.PubMedCentral CrossRef PubMed
    13.Bentivegna A, Conconi D, Panzeri E, Sala E, Bovo G, Vigano P, et al. Biological heterogeneity of putative bladder cancer stem-like cell population from human bladder transitional cell carcinoma. Cancer Sci. 2010;101:416–24.CrossRef PubMed
    14.Tran M-N, Jinesh G-G, McConkey D-J, Kamat A-M. Bladder cancer stem cells. Curr Stem Cell Res Therapy. 2010;5:387–95.CrossRef
    15.••
Chan K-S, Espinosa I, Chao M, Wong D, Ailes L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A. 2009;106:14016–21.PubMedCentral CrossRef PubMed
16.Kasper S. Identification, characterization, and biological relevance of prostate cancer stem cells from clinical specimens. Urol Oncol. 2009;27:301–3.PubMedCentral CrossRef PubMed
17.Santisteban M, Reiman J-M, Asiedu M-K, Behrens M-D, Nassar A, Kalli K-R, et al. Immune-induced epithelial-to-mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 2009;69:2887–95.PubMedCentral CrossRef PubMed
18.Hay E-D. An overview of epithelia-mesenchymal transformation. Acta Anat (Basel). 1995;154:8–20.CrossRef
19.Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000;299:551–72.CrossRef PubMed
20.Rangel M-C, Karasawa H, Castro N-P, Nagaoka T, Salomon D-S, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. Am J Pathol. 2012;180:2188–200.PubMedCentral CrossRef PubMed
21.Radisky D-C. Epithelial-mesenchymal transition. J Cell Sci. 2005;118:4325–6.CrossRef PubMed
22.Chaffer C-L, Breman J-P, Slavin J-L, Blick T, Thompson E-W, Williams E-D. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 2006;66:11271–8.CrossRef PubMed
23.•
Islam S-S, Mokhtari R-B, Yaser E-H, Azadi M-A, Alauddin M, Yeger H, et al. TGF-β1 induces EMT reprograming of porcine bladder urothelial cells in collagen producing fibroblast-like cells in Smad2/Smad3-dependent manner. J Cell Commun Signal. 2013. doi:10.​1007/​s11523-015-0386-5 . This manuscript described how the porcine bladder urothelial cells transformed to mesenchymal cells and contribute bladder fibrosis. They showed TGF-beta1 may contributes to bladder fibrosis through Smad2/Smad3 dependent manner. PubMedCentral PubMed
24.Huang T-T, Wang H, Kingsley E-A, Risbridger G-P, Russel P-J. Molecular profiling of bladder cancer: involvement of TGF-β pathway in bladder cancer progression. Cancer Lett. 2008;265:27–38.CrossRef
25.Ingham P-W, McMahon A-P. Hedgehog signaling in animal development. Genes Dev. 2001;15:3059–87.CrossRef PubMed
26.Gonnissen A, Isebaert HK. Hedgehog signaling in prostate cancer and its therapeutic implication. Int J Mol Sci. 2013;14:13979–4007.PubMedCentral CrossRef PubMed
27.Muller J-M, Chevrier L, Cochard S, Meunier A-C, Chadeneau C. Hedgehog, Notch and Wnt developmental pathways as target for anti-cancer drugs. Drug Discov Today Disease Mech. 2007;4:285–91.CrossRef
28.Maugeri-Sacca M, Zeuner A, De Maria R. Therapeutic-targeting of cancer stem cells. Front Oncol. 2011;1:10.PubMedCentral CrossRef PubMed
29.Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.CrossRef PubMed
30.Corbit K-C, Aanstad P, Singla V, Norman A-R, Stainler D-Y, Reiter J-F. Vertebrate smoothened functions at the primary cilium. Nature. 2005;437:1018–21.CrossRef PubMed
31.Han L, Shi S, Gong T, Zhang Z, Sun X. Cancer stem cells: therapeutic implication and prospectives in cancer therapy. Acta Pharmaceutica Sinica B. 2013;3:65–75.CrossRef
32.Jiang J, Hui C-C. Hedgehog signaling in development and cancer. Dev Cell. 2008;15:801–12.CrossRef PubMed
33.Elisabeth H-V, Davis O-W, Philip M-I. The Sonic hedgehog-patched-Gli pathway in human development and disease. Am J Hum Genet. 2000;67:1047–54.CrossRef
34.Cheng W, Yeung C-K, Ng Y-K, Zhang J-R, Hui C-C, Kim P-C. Sonic hedgehog mediator Gli2 regulates bladder mesenchymal patterning. J Urol. 2008;180:1543–50.CrossRef PubMed
35.Sgiroyanagi Y, Liu B, Cao M, Agras K, Li J, Hseieh M-H, et al. Urothelial sonic hedgehog signaling plays an important role in bladder amooth formation. Differentiation. 2007;75:968–77.CrossRef
36.DeSouza K-R, Saha M, Carpenter A-R, Scott M, McHugh K-M. Analysis of the sonic hedgehog signaling pathway in normal and abnormal bladder development. PLoS ONE. 2013. doi:10.​1371/​journal.​pone.​0053675 .
37.Zhu G, Zhao H-E, Wu D, Zhang L, Li L, He D, et al. Sonic hedgehog signaling in normal human bladder development. J Urol. 2013;189:e222.CrossRef
38.Doles J, Cook C, Shi X, Valosky J, Lipinski R, Bushman W. Functional compensation in hedgehog signaling during mouse prostate development. Dev Biol. 2006;295:13–25.CrossRef PubMed
39.Haraguchi R, Motoyama J, Sasaki H, Satoh Y, Miyagawa S, Nakagata N, et al. Molecular analysis of coordinated bladder and urinogenital organ formation by hedgehog signaling. Development. 2007;134:525–33.CrossRef PubMed
40.Haraguchi R, Ro M, Hui C, Motoyama J, Makino S, Shiroishi T, et al. Unique functions of sonic hedgehog signaling during external genetalia development. Development. 2001;128:4241–50.PubMed
41.Castelino R-C, Barwick B-G, Schniederjan M, Buss M-C, Becher O, Hambardzumyan D, et al. Heterozygosity of Pten promotes tumorigenesis in a mouse model medulloblastoma. PLoS ONE. 2010;5:p10849.CrossRef
42.Takebe N, Harris P-J, Warren R-Q, Ivy S-P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog signaling pathways. Nat Rev Clin Oncol. 2011;8:97–106.CrossRef PubMed
43.Dennler S, Andre J, Alexaki I, Li A, Magnaldo T, ten Dijke P, et al. Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 2007;67:6981–6.CrossRef PubMed
44.Islam S-S, Mokhtari R-B, Kumar S, Maalouf J, Arab S, Yeger H, et al. Spatio-temporal distribution of Smads and role of Smads/TGF-beta/BMP-4 in the regulation of mouse bladder organogenesis. PLoS ONE. 2013. doi:10.​1371/​journal.​pone.​oo61340 .
45.Mauviel A. Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol Med. 2005;117:69–80.PubMed
46.Al-Hajj M, Clarke M-F. Self-renewal and solid tumor stem cells. Proc Natl Acad Sci U S A. 2004;23:7274–82.
47.••
Islam S-S, Mokhtari R-B, Noman A-S, Uddin M, Rahman M-Z, Azadi M-A, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness voa activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinogenesis. 2015. doi:10.​1002/​mc.​22300 . This manuscript elegantly showed how TGF-beta activate Shh and activated Shh contributes to bladder cancer migration, invasion and metastatic features as well as bladder cancer cells stemness.
48.She J-J, Zhang P-G, Wang Z-M, Gan W-M, Che X-M. Identification of of side population cells from bladder cancer cells by DyeCle Violet staining. Cancer Biol Ther. 2008;7:1663–8.CrossRef PubMed
49.Ning Z-F, Huang Y-Z, Lin T-X, Zhou Y-X, Jiang C, Xu K-W, et al. Subpopulation of stem-like cells in side in side populztion cells from the human bladder transitional cell cancer cell line T24. J Int Med Res. 2009;37:621–30.CrossRef PubMed
50.Ji P, Diederichs S, Wang W, Boing S, Metzgar R, Schneider P-M, et al. MALAT-1, a novel non-coding RNA and thymosin beta4 predict metastasis and survival in early stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.CrossRef PubMed
51.Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qui F. Upregulation of MALAT-1 contributes to bladder cancer migration by inducing epithelial-to-mesenchymal transition. Mol Biosyst. 2012;8:2289–94.CrossRef PubMed
52.Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. TGF-β-induced upregulation of malat1 promotes bladder cancer metastasisby associating with suz12. Clin Cancer Res. 2014;20:1–11.CrossRef
53.Mao L et al. A critical role of sonic hedgehog signaling in maintaining the tumorigenicity of neuroblastoma cells. Cancer Sci. 2009;100:1848–55.CrossRef PubMed
54.Liu S, Dontu G, Mantle I-D, Patel S, Ahn N-S, Jackson K-W, et al. Hedgehog signaling and Bmi1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66:6063–71.PubMedCentral CrossRef PubMed
55.Moraes R-C, Zhang X, Harrington N, Fung J-Y, Wu M-F, Hilsenbeck S-G, et al. Constitutive activation of smoothened (SMO) in mammary gland of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development. 2007;134:1231–42.CrossRef PubMed
56.••
Shin K, Lim A, Zhao C, Sahoo D, Pan Y, Splekerkoetter E, et al. Hedhehog signaling restrain bladder cancer progression by eliciting stromal production of urothelial differentiation factors. Cancer Cell. 2014;13:521–33. This study described how Shh signaling initiate bladder cancer at the beginning and lost at the later stage of bladder cancer progression. CrossRef
57.Fei D-L, Sanchez-Mejias A, Wang Z, Flaveny C, Long J et al. hedgehog signaling regulates bladder cancer growth and tumorigenicity. Cancer Res 2012;72. doi: 10.​1158/​0008-5472.​CAN-11-4123 .
58.Berman D-M, Karhadkar S-S, Hallahan A-R, et al. Medullublastoma growth inhibition by hedgehog pathway blockade. Science 200;297:1559-1561.
59.Chen J-K, Taipale J, Cooper M-K, Beachy P-A. Inhibition of hedgehog signaling by direct binding of cyclopamine to smoothened. Genes Dev. 2002;16:2743–8.PubMedCentral CrossRef PubMed
  • 作者单位:Islam S. Syed (1) (2)
    Akbari Pedram (1)
    Walid A. Farhat (1)

    1. Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
    2. Cancer Biology and Experimental Therapeutic Section, Division of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
  • 刊物主题:Urology/Andrology; Nephrology;
  • 出版者:Springer US
  • ISSN:1534-6285
  • 文摘
    Sonic hedgehog (Shh) signaling pathway has emerged as a critical component of bladder development, cancer initiation, and progression. While the role of Shh signaling in bladder development is well documented, its role in bladder cancer progression is uncertain. Additionally, epithelial-to-mesenchymal transition (EMT) has been identified to promote bladder cancer progression in the initial stages and also contribute to drug resistance in the later stage and ultimately metastasis. We speculate that epithelial-to-mesenchymal transitions (EMT) and Shh fuel the carcinogenesis process. This review presents the most recent studies focusing on the role of Shh signaling in bladder cancer progression

    © 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

    地址:北京市海淀区学院路29号 邮编:100083

    电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700