Optimal Pre-storm Flood Hedging Releases for a Single Reservoir
详细信息    查看全文
文摘
Flood hedging reservoir operation is when a pre-storm release creates a small flood downstream to reduce the likelihood of a more damaging but uncertain larger flood in the future. Such pre-storm releases before a flood can increase reservoir storage capacity available to capture more severe flood flows, but also can immediately increase downstream flood damage and reduce stored water supply. This study develops an optimization model for pre-storm flood hedging releases and examines some necessary theoretical conditions for optimality, considering hydrologic uncertainty from flood forecasts and engineering uncertainty from flood failures. Theoretically, the ideal optimality condition for pre-storm flood hedging releases is where the current marginal damage from the hedging release equals the future expected marginal damage from storm releases. Additional water supply losses due to pre-storm releases tend to reduce pre-storm flood hedging releases. The overall flood damage cost to be minimized must be a convex function of pre-storm hedging releases for flood hedging to be optimal. Such convexity is determined by the overall flood risk together with the probability distribution of storm forecasts. Increasing the convexity of the failure probability function can induce more pre-storm hedging release. Categorized by flood risk likelihood downstream, forecasted storms that are large, but not yet overwhelming flood management systems, drive optimal flood hedging operation. A wide range of near-optimal hedging releases is observed in numerical examples, providing options for more rational water resources management decisions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700