Probing the ATP-induced conformational flexibility of the PcrA helicase protein using molecular dynamics simulation
详细信息    查看全文
  • 作者:Anil R. Mhashal ; Chandan Kumar Choudhury ; Sudip Roy
  • 关键词:ATP ; DNA helicase ; PcrA ; Translocation ; Unwinding ; Umbrella sampling ; Residue reorientation
  • 刊名:Journal of Molecular Modeling
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:3
  • 全文大小:3,718 KB
  • 参考文献:1.Bird LE, Brannigan JA, Subramanya HS, Wigley DB (1998) Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism. Nucleic Acids Res 26(11):2686–2693
    2.Dillingham MS, Wigley DB, Webb MR (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39(1):205–212
    3.Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struc Biol 3(3):419–429
    4.Tuteja N, Tuteja R (2004) Unraveling DNA helicases—motif, structure, mechanism and function. Eur J Biochem 271(10):1849–1863
    5.Soultanas P, Wigley DB (2001) Unwinding the ‘Gordian knot’ of helicase action. Trends Biochem Sci 26(1):47–54CrossRef
    6.Soultanas P, Wigley DB (2000) DNA helicases: ‘inching forward’. Curr Opin Struc Biol 10(1):124–128CrossRef
    7.Fischer CJ, Maluf NK, Lohman TM (2004) Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA. J Mol Biol 344(5):1287–1309
    8.Tomko EJ, Fischer CJ, Niedziela-Majka A, Lohman TM (2007) A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. Mol Cell 26(3):335–347
    9.Brendza KM, Cheng W, Fischer CJ, Chesnik MA, Niedziela-Majka A, Lohman TM (2005) Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. Proc Natl Acad Sci USA 102(29):10076–10081
    10.Wong I, Lohman TM (1992) Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase DNA-binding. Science 256(5055):350–355
    11.Dittrich M, Schulten K (2006) PcrA helicase, a prototype ATP-driven molecular motor. Structure 14(9):1345–1353CrossRef
    12.Soultanas P, Dillingham MS, Velankar SS, Wigley DB (1999) DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase. J Mol Biol 290(1):137–148CrossRef
    13.Ali JA, Lohman TM (1997) Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science 275(5298):377–380
    14.Mackintosh SG, Raney KD (2006) DNA unwinding and protein displacement by superfamily 1 and superfamily 2 helicases. Nucleic Acids Res 34(15):4154–4159CrossRef
    15.Velankar SS, Soultanas P, Dillingham MS, Subramanya HS, Wigley DB (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97(1):75–84CrossRef
    16.Niedziela-Majka A, Chesnik MA, Tomko EJ, Lohman TM (2007) Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro. J Biol Chem 282(37):27076–27085
    17.Tuteja N, Tuteja R (2004) Unraveling DNA helicases. motif, structure, mechanism and function (vol 271, pg 1849, 2004). Eur J Biochem 271(15):3283–3283CrossRef
    18.Yu J, Ha T, Schulten K (2006) Structure-based model of the stepping motor of PcrA helicase. Biophys J 91(6):2097–2114CrossRef
    19.Yu J, Ha T, Schulten K (2007) How directional translocation is regulated in a DNA helicase motor. Biophys J 93(11):3783–3797CrossRef
    20.Betterton MD, Julicher F (2005) Opening of nucleic-acid double strands by helicases: active versus passive opening (vol 71, pg 11904, 2005). Phys Rev E 72(2)
    21.Cox K, Watson T, Soultanas P, Hirst JD (2003) Molecular dynamics simulations of a helicase. Proteins 52(2):254–262CrossRef
    22.MacKerell AD, Nilsson L (2008) Molecular dynamics simulations of nucleic acid–protein complexes. Curr Opin Struc Biol 18(2):194–199
    23.Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242
    24.Myong S, Rasnik I, Joo C, Lohman TM, Ha T (2005) Repetitive shuttling of a motor protein on DNA. Nature 437(7063):1321–1325CrossRef
    25.Korolev S, Hsieh J, Gauss GH, Lohman TM, Waksman G (1997) Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90(4):635–647
    26.Rasnik I, Myong S, Cheng W, Lohman TM, Ha T (2004) DNA-binding orientation and domain conformation of the E. coli Rep helicase monomer bound to a partial duplex junction: single-molecule studies of fluorescently labeled enzymes. J Mol Biol 336(2):395–408
    27.Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718
    28.Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447
    29.Hess B (2009) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Abstr Pap Am Chem S 237
    30.Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs—a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1–3):43–56CrossRef
    31.Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012CrossRef
    32.Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723CrossRef
    33.Toukan K, Rahman A (1985) Molecular dynamics study of atomic motions in water. Phys Rev B 31(5):2643–2648
    34.Debye P (1909) Approximation formula for cylindrical function in high value arguments and alterable index values. Math Ann 67:535–558CrossRef
    35.Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101
    36.Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690
    37.Darden T, York D, Pedersen L (1993) Particle mesh ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092
    38.Patey GN, Valleau JP (1973) Free energy of spheres with dipoles—Monte Carlo with multistage sampling. Chem Phys Lett 21(2):297–300
    39.Torrie GM, Valleau JP (1974) Monte-Carlo free-energy estimates using non-Boltzmann sampling—application to subcritical Lennard–Jones fluid. Chem Phys Lett 28(4):578–581
    40.Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation—umbrella sampling. J Comput Phys 23(2):187–199
    41.Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput 3(1):26–41CrossRef
    42.Hub JS, de Groot BL, van der Spoel D (2010) g_wham: a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput 6(12):3713–3720
    43.McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72(10):5639–5648
    44.Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72(1):650–654
    45.Zhao Y, Truhlar D (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120(1–3):215–241CrossRef
    46.Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41(2):157–167CrossRef
    47.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2009) Gaussian 09. Gaussian, Inc., Wallingford
    48.Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B 114(4):1652–1660CrossRef
    49.Shams H, Golji J, Mofrad Mohammad RK (2012) A molecular trajectory of α-actinin activation. Biophys J 103(10):2050–2059CrossRef
    50.Pathak AK, Bandyopadhyay T (2014) Unbinding free energy of acetylcholinesterase bound oxime drugs along the gorge pathway from metadynamics—umbrella sampling investigation. Proteins Struct Funct Bioinform 82(9):1799–1818
    51.Sinha V, Ganguly B, Bandyopadhyay T (2012) Energetics of ortho-7 (oxime drug) translocation through the active-site gorge of tabun conjugated acetylcholinesterase. Plos One 7(7)
    52.De Angeli A, Moran O, Wege S, Filleur S, Ephritikhine G, Thomine S et al (2009) ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J Biol Chem 284(39):26526–26532
    53.Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN et al (2011) NCIPLOT: a program for plotting noncovalent interaction regions. J Chem Theory Comput 7(3):625–632
    54.Hayward S, Go N (1995) Collective variable description of native protein dynamics. Annu Rev Phys Chem 46:223–250CrossRef
  • 作者单位:Anil R. Mhashal (1)
    Chandan Kumar Choudhury (1)
    Sudip Roy (1)

    1. Physical Chemistry Division, National Chemical Laboratory, Pune, 411008, India
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
Helicases are enzymes that unwind double-stranded DNA (dsDNA) into its single-stranded components. It is important to understand the binding and unbinding of ATP from the active sites of helicases, as this knowledge can be used to elucidate the functionality of helicases during the unwinding of dsDNA. In this work, we investigated the unbinding of ATP and its effect on the active-site residues of the helicase PcrA using molecular dynamic simulations. To mimic the unbinding process of ATP from the active site of the helicase, we simulated the application of an external force that pulls ATP from the active site and computed the free-energy change during this process. We estimated an energy cost of ~85 kJ/mol for the transformation of the helicase from the ATP-bound state (1QHH) to the ATP-free state (1PJR). Unbinding led to conformational changes in the residues of the protein at the active site. Some of the residues at the ATP-binding site were significantly reoriented when the ATP was pulled. We observed a clear competition between reorientation of the residues and energy stabilization by hydrogen bonds between the ATP and active-site residues. We also checked the flexibility of the PcrA protein using a principal component analysis of domain motion. We found that the ATP-free state of the helicase is more flexible than the ATP-bound state. Keywords ATP DNA helicase PcrA Translocation Unwinding Umbrella sampling Residue reorientation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700