Minimal Models to Capture the Dynamics of a Rotary Unmanned Aerial Vehicle
详细信息    查看全文
  • 作者:Rejina Ling Wei Choi (2)
    Christopher E. Hann (1)
    XiaoQi Chen (2)
  • 关键词:Unmanned aerial vehicle ; Minimal modelling ; Integral ; based parameter identification ; Extended Kalman Filter ; Disturbance
  • 刊名:Journal of Intelligent and Robotic Systems
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:75
  • 期:3-4
  • 页码:569-593
  • 全文大小:1,765 KB
  • 参考文献:1. Morris, J.C., van Nieuwstadt, M., Bendotti, P.: Identification and control of a model helicopter in hover. In: American Control Conference, 1994, vol. 1232, pp. 1238鈥?242, 29 June鈥? July 1994
    2. Mettler, B., Kanade, T., Tischler, M.B.: System identification modeling of a model-scale helicopter. In: Vol. Tech. Report CMU-RI-TR-00-03. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2000)
    3. Salman, S.A., Puttige, V.R., Anavatti, S.G.: Real-time validation and comparison of fuzzy identification and state-space identification for a UAV platform. In: 2006 IEEE Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, pp. 2138鈥?143, 4鈥? Oct. 2006
    4. Kallapur, A.G., Anavatti, S.G.: UAV linear and nonlinear estimation using extended Kalman filter. In: International Conference on Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, pp. 250鈥?50, 28 Nov.鈥? Dec. 2006
    5. Lyashevskiy, S., Yaobin, C.: Nonlinear identification of aircraft. In: Proceedings of the 1996 IEEE International Conference on Control Applications, pp. 327鈥?31, 15鈥?8 Sep. 1996
    6. Kanade, M.L.C.a.a.W.C.M.a.T.: Modeling of small-scale helicopters with integrated first-principles and system-identification techniques. In: Proceedings of the 58th Forum of the American Helicopter Society. Montreal, Canada, pp. 2505鈥?516 (2002)
    7. Tischler, M.B., Remple, R.K.: Aircraft and rotorcraft system identification: engineering methods with flight-test examples. American Institute of Aeronautics and Astronautics (2006)
    8. Hyunchul Shim, D., Hyoun Jin, K., Sastry, S.: Control system design for rotorcraft-based unmanned aerial vehicles using time-domain system identification. In: Proceedings of the 2000 IEEE International Conference on Control Applications, 2000, pp. 808鈥?13 (2000)
    9. Bruce P.D., S.J.E.F., Kellett M.G.: Maximum likelihood identification of a rotary-wing RPV simulation model from flight-test data. Paper presented at the Atmospheric Flight Mechanics Conference, Boston, MA
    10. Raol, J.R., Girija, G., Singh, J., Engineers, I.o.E.: Modelling and Parameter Estimation of Dynamic Systems. Institution of Electrical Engineers (2004)
    11. Hanbo, Q., Guanqing, C., Hongxing, C., Yiping, Y.: A grey-modeling research on a small-scale autonomous helicopter. In: International Conference on Information Engineering and Computer Science, 2009. ICIECS 2009, pp. 1鈥?, 19鈥?0 Dec. 2009
    12. Hann, C.E., M.S., Rao, A., Winn, O., Wongvanich, N., Chen, X.: Minimal modelling approach to describe turbulent rocket roll dynamics in a vertical wind tunnel. J. Aerosp. Eng. 226(9), 1042鈥?060 (2012)
    13. Hann, C.E., Chase, J.G., Lin, J., Lotz, T., Doran, C.V., Shaw, G.M: Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput. Methods Programs Biomed. 77(3), 259鈥?70 (2005) CrossRef
    14. Hann, C.E., Chase, J.G., Ypma, M.F., Elfring, J., Nor, N.M.H., Lawrence, P., Shaw, G.M.: The impact of parameter identification methods on drug therapy control in an intensive care unit. Open Med. Inform. J. 2, 92鈥?04 (2008) CrossRef
    15. Padfield, G.D.: Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modelling. Blackwell Publishing (2007)
    16. Raptis, I.A., Valavanis, K.P., Moreno, W.A.: System identification and discrete nonlinear control of miniature helicopters using backstepping. J. Intell. Robot. Syst. 55(2鈥?), 223鈥?43 (2009). doi:10.1007/s10846-008-9295-5 CrossRef
    17. Castillo, P., Lozano, R., Dzul, A.E.: Modelling and Control of Mini-flying Machines. Springer, New York (2005)
    18. Kim, S.K., Tilbury, D.M.: Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics. J. Robot. Syst. 21(3), 95鈥?16 (2004). doi:10.1002/rob.20002 CrossRef
    19. Docherty, P.D., Chase, J.G., Lotz, T.F., Hann, C.E., Shaw, G.M., Berkeley, J.E., TeMorenga, L., Mann, J.I., McAuley, K.: Independent cohort cross-validation of the real-time DISTq estimation of insulin sensitivity. Comput. Methods Prog. Biomed. 102(2), 94鈥?04 (2011). doi:10.1016/j.cmpb.2010.08.002 CrossRef
    20. Wong, X.W., Chase, J.G., Shaw, G.M., Hann, C.E., Lotz, T., Lin, J., Singh-Levett, I., Hollingsworth, L.J., Wong, O.S.W., Andreassen, S.: Model predictive glycaemic regulation in critical illness using insulin and nutrition input: a pilot study. Med. Eng. Phys. 28(7), 665鈥?81 (2006). doi:10.1016/j.medengphy.2005.10.015 CrossRef
    21. Martini, A., L茅onard, F., Abba, G.: Dynamic modelling and stability analysis of model-scale helicopters under wind gust. J. Intell. Robot. Syst. 54(4), 647鈥?86 (2009). doi:10.1007/s10846-008-9280-z CrossRef
    22. Chowdhary, G.a.L., Sven: Control of a VTOL UAV via online parameter estimation. Paper presented at the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, USA
    23. Abhijit, G. Kallapur, S.S.A.a.S.G.A.: Application of extended Kalman Filter towards UAV identification. In: Autonomous Robots and Agents, pp. 199鈥?07. Springer, Berlin/Heidelberg (2007)
    24. Ozbek, L.v.E., M: Online estimation of the state and the parameters in compartmental models using extended Kalman filter. In: Trofimova, W.H.S.a.I. (ed.) Nonlinear Dynamics in the Life and Social Sciences, pp.聽262鈥?71. IOS Press (2001)
    25. Gavrilets, V., E.F., Mettler, B., Piedmonte, M., Feron, E.: Aggressive maneuvering of small autonomous helicopters: a human-centered approach. Int. J. Robot. Res. 20, 795鈥?07 (2001) CrossRef
  • 作者单位:Rejina Ling Wei Choi (2)
    Christopher E. Hann (1)
    XiaoQi Chen (2)

    2. Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
    1. Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
  • ISSN:1573-0409
文摘
This paper presents a method for characterising the primary dynamics of a rotary unmanned aerial vehicle. Based on first principles and basic aerodynamics, a mathematical model which explains the rigid body dynamics of a model-scale helicopter is developed. This model is reduced to three simplified decoupled models of attitude dynamics. Empirical test data is collected from a field experiment with significant wind disturbances. The method worked accurately on both uncoupled and fully coupled attitude models. An integral based parameter identification method is presented to identify the unknown intrinsic helicopter parameters as well as model of wind disturbance. An extended Kalman filter system identification method and common nonlinear regression are used for comparison. The EKF was found to be highly dependent on the initial states, so is not suitable for this application which contains significant disturbance and modelling errors. Nonlinear regression proved to be sufficiently accurate but computationally expensive. The proposed integral based parameter identification method was shown to be fast and accurate and is well suited to this application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700