Differential impact of local stiffening and narrowing on hemodynamics in repaired aortic coarctation: an FSI study
详细信息    查看全文
  • 作者:Liesbeth Taelman ; Joris Bols ; Joris Degroote…
  • 关键词:Fluid–structure interaction ; Stent ; End ; to ; end anastomosis ; Image ; based modeling
  • 刊名:Medical and Biological Engineering and Computing
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:54
  • 期:2-3
  • 页码:497-510
  • 全文大小:3,802 KB
  • 参考文献:1.Aspden A, Nikiforakis N, Dalziel S, Bell J (2009) Analysis of implicit LES methods. Commun Appl Math Comput Sci 3:103–126CrossRef
    2.Bols J, De Santis G, Degroote J, Verhegghe B, Segers P, Vierendeels J (2013) Automated hexahedral mesh generation in a complex vascular tree: the extended treemesh method. In: ASME 2013 summer bioengineering conference. American Society of Mechanical Engineers, pp V01AT13A019–V001AT013A019
    3.Bouchart F, Dubar A, Tabley A, Litzler PY, Haas-Hubscher C, Redonnet M, Bessou JP, Soyer R (2000) Coarctation of the aorta in adults: surgical results and long-term follow-up. Ann Thorac Surg 70:1483–1488. doi:10.​1016/​s0003-4975(00)01999-8 CrossRef PubMed
    4.Carvalho JS, Redington AN, Shinebourne EA, Rigby ML, Gibson D (1990) Continuous wave doppler echocardiography and coarctation of the aorta—gradients and flow patterns in the assessment of severity. Br Heart J 64:133–137CrossRef PubMed PubMedCentral
    5.Celermajer DS, Greaves K (2002) Survivors of coarctation repair: fixed but not cured. Heart 88:113–114. doi:10.​1136/​heart.​88.​2.​113 CrossRef PubMed PubMedCentral
    6.Charonko JJ, Ragab SA, Vlachos PP (2009) A scaling parameter for predicting pressure wave reflection in stented arteries. J Med Device Trans Asme. doi:10.​1115/​1.​3089140
    7.Clark C (1976) Fluid-mechanics of aortic-stenosis. 2 Unsteady-flow experiments. J Biomech 9:567. doi:10.​1016/​0021-9290(76)90097-x CrossRef PubMed
    8.Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC (1989) Coarctation of the aorta—long-term follow-up and prediction of outcome after surgical-correction. Circulation 80:840–845CrossRef PubMed
    9.Coogan JS, Humphrey JD, Figueroa CA (2013) Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomech Model Mechanobiol 12:79–93. doi:10.​1007/​s10237-012-0383-x CrossRef PubMed PubMedCentral
    10.de Divitiis M, Rubba P, Calabro R (2005) Arterial hypertension and cardiovascular prognosis after successful repair of aortic coarctation: a clinical model for the study of vascular function. Nutr Metabol Cardiovasc Dis 15:382–394. doi:10.​1016/​j.​numecd.​2005.​08.​002 CrossRef
    11.De Santis G, Mortier P, De Beule M, Segers P, Verdonck P, Verhegghe B (2010) Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med Biol Eng Comput 48:371–380. doi:10.​1007/​s11517-010-0583-4 CrossRef PubMed
    12.Degroote J, Bathe K-J, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput Struct 87:793–801. doi:10.​1016/​j.​compstruc.​2008.​11.​013 CrossRef
    13.Ebeid M (2003) Balloon expandable stents for coarctation of the aorta: review of current status and technical considerations. Image Paediatr Cardiol 5:25–41
    14.Fletcher SE, Nihill MR, Grifka RG, Olaughlin MP, Mullins CE (1995) Balloon angioplasty of native coarctation of the aorta—midterm follow-up and prognostic factors. J Am Coll Cardiol 25:730–734. doi:10.​1016/​0735-1097(94)00437-u CrossRef PubMed
    15.Formaggia L, Nobile F, Quarteroni A (2002) A one dimensional model for blood flow: application to vascular prosthesis. In: Ciarlet PG, Miyoshi T (eds) Mathematical modeling and numerical simulation in continuum mechanics, vol 19. Lecture notes in computational science and engineering, pp 137–153
    16.Giddens DP, Mabon RF, Cassanova RA (1976) Measurements of disordered flows distal to subtotal vascular stenoses in thoracic aortas of dogs. Circ Res 39:112–119CrossRef PubMed
    17.Humphrey JD (2008) Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52:195–200. doi:10.​1161/​hypertensionaha.​107.​103440 CrossRef PubMed PubMedCentral
    18.Jenkins NP, Ward C (1999) Coarctation of the aorta: natural history and outcome after surgical treatment. Qjm Mon J Assoc Physicians 92:365–371. doi:10.​1093/​qjmed/​92.​7.​365 CrossRef
    19.Johnston TA, Grifka RG, Jones TK (2004) Endovascular stents for treatment of coarctation of the aorta: acute results and follow-up experience. Catheter Cardiovasc Interv 62:499–505. doi:10.​1002/​ccd.​20071 CrossRef PubMed
    20.Keshavarz-Motamed Z, Kadem L (2011) 3D pulsatile flow in a curved tube with coexisting model of aortic stenosis and coarctation of the aorta. Med Eng Phys 33:315–324. doi:10.​1016/​j.​medengphy.​2010.​10.​017 CrossRef PubMed
    21.Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37:2153–2169. doi:10.​1007/​s10439-009-9760-8 CrossRef PubMed
    22.LaDisa JF Jr, Dholakia RJ, Figueroa CA, Vignon-Clementel IE, Chan FP, Samyn MM, Cava JR, Taylor CA, Feinstein JA (2011) Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit Heart Dis 6:432–443. doi:10.​1111/​j.​1747-0803.​2011.​00553.​x CrossRef PubMed PubMedCentral
    23.LaDisa JF Jr, Figueroa CA, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng Trans Asme. doi:10.​1115/​1.​4004996
    24.Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74:834–841. doi:10.​1139/​cjpp-74-7-834 CrossRef PubMed
    25.Liu B (2007) The influences of stenosis on the downstream flow pattern in curved arteries. Med Eng Phys 29:868–876. doi:10.​1016/​j.​medengphy.​2006.​09.​009 CrossRef PubMed
    26.Marom G, Kim H-S, Rosenfeld M, Raanani E, Haj-Ali R (2013) Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51:839–848. doi:10.​1007/​s11517-013-1055-4 CrossRef PubMed
    27.Marshall AC, Perry SB, Keane JF, Lock JE (2000) Early results and medium-term follow-up of stent implantation for mild residual or recurrent aortic coarctation. Am Heart J 139:1054–1060. doi:10.​1067/​mhj.​2000.​106616 CrossRef PubMed
    28.Menon A, Wendell DC, Wang H, Eddinger TJ, Toth JM, Dholakia RJ, Larsen PM, Jensen ES, LaDisa JF Jr (2012) A coupled experimental and computational approach to quantify deleterious hemodynamics, vascular alterations, and mechanisms of long-term morbidity in response to aortic coarctation. J Pharmacol Toxicol Methods 65:18–28. doi:10.​1016/​j.​vascn.​2011.​10.​003 CrossRef PubMed PubMedCentral
    29.Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau JF (2012) External tissue support and fluid–structure simulation in blood flows. Biomech Model Mechanobiol 11:1–18. doi:10.​1007/​s10237-011-0289-z CrossRef PubMed
    30.Oechslin EN (2008) Does a stent cure hypertension? Heart 94:828–829. doi:10.​1136/​hrt.​2007.​130013 CrossRef PubMed
    31.Olivieri LJ, de Zelicourt DA, Haggerty CM, Ratnayaka K, Cross RR, Yoganathan AP (2011) Hemodynamic modeling of surgically repaired coarctation of the aorta. Cardiovasc Eng Technol 2:288–295. doi:10.​1007/​s13239-011-0059-1 CrossRef PubMed PubMedCentral
    32.Orourke MF, Cartmill TB (1971) Influence of aortic coarctation on pulsatile hemodynamics in proximal aorta. Circulation 44:281CrossRef
    33.Pedersen TA (2012) Late morbidity after repair of aortic coarctation. Dan Med J 59:B4436PubMed
    34.Pihkala J, Thyagarajan GK, Taylor GP, Nykanen D, Benson LN (2001) The effect of implantation of aortic stents on compliance and blood flow. An experimental study in pigs. Cardiol Young 11:173–181. doi:10.​1017/​s104795110100007​5 CrossRef PubMed
    35.Prendergast PJ, Lally C, Daly S, Reid AJ, Lee TC, Quinn D, Dolan F (2003) Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J Biomech Eng Trans Asme 125:692–699. doi:10.​1115/​1.​1613674 CrossRef
    36.Rothman A (1998) Coarctation of the aorta: an update. Curr Probl Pediatr 28:37–60. doi:10.​1016/​S0045-9380(98)80039-X
    37.Stergiopulos N, Segers P, Westerhof N (1999) Use of pulse pressure method for estimating total arterial compliance in vivo. Am J Physiol Heart Circ Physiol 276:H424–H428
    38.Stewart AB, Ahmed R, Travill CM, Newman CGH (1993) Coarctation of the aorta life and health 20–44 years after surgical repair. Br Heart J 69:65–70CrossRef PubMed PubMedCentral
    39.Taelman L, Degroote J, Swillens A, Vierendeels J, Segers P (2014) Fluid–structure interaction simulation of pulse propagation in arteries: numerical pitfalls and hemodynamic impact of a local stiffening. Int J Eng Sci 77:1–13. doi:10.​1016/​j.​ijengsci.​2013.​12.​002 CrossRef
    40.Valverde I, Staicu C, Grotenhuis H, Marzo A, Rhode K, Shi Y, Brown A, Tzifa A, Hussain T, Greil G, Lawford P, Razavi R, Hose R, Beerbaum P (2011) Predicting hemodynamics in native and residual coarctation: preliminary results of a rigid-wall computational-fluid-dynamics model (RW-CFD) validated against clinically invasive pressure measures at rest and during pharmacological stress. J Cardiovasc Magn Reson 13:1–4. doi:10.​1186/​1532-429X-13-S1-P49 CrossRef
    41.van den Wijngaard JPHM, Siebes M, Westerhof BE (2009) Comparison of arterial waves derived by classical wave separation and wave intensity analysis in a model of aortic coarctation. Med Biol Eng Compu 47:211–220. doi:10.​1007/​s11517-008-0387-y CrossRef
    42.Verhaaren H, De Mey S, Coomans I, Segers P, De Wolf D, Matthys D, Verdonck P (2001) Fixed region of nondistensibility after coarctation repair: in vitro validation of its influence on Doppler peak velocities. J Am Soc Echocardiogr 14:580–587. doi:10.​1067/​mje.​2001.​113256 CrossRef PubMed
    43.Vogt M, Kühn A, Baumgartner D, Baumgartner C, Busch R, Kostolny M, Hess J (2005) Impaired elastic properties of the ascending aorta in newborns before and early after successful coarctation repair: proof of a systemic vascular disease of the prestenotic arteries? Circulation 111:3269–3273. doi:10.​1161/​circulationaha.​104.​529792 CrossRef PubMed
    44.Vriend JWJ, Mulder BJM (2005) Late complications in patients after repair of aortic coarctation: implications for management. Int J Cardiol 101:399–406. doi:10.​1016/​j.​ijcard.​2004.​03.​056 CrossRef PubMed
    45.Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF Jr (2013) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35:723–735. doi:10.​1016/​j.​medengphy.​2012.​07.​015 CrossRef PubMed
  • 作者单位:Liesbeth Taelman (1)
    Joris Bols (2)
    Joris Degroote (2)
    Vivek Muthurangu (3)
    Joseph Panzer (4)
    Jan Vierendeels (2)
    Patrick Segers (1)

    1. IBiTech-bioMMeda, iMinds Medical IT, Faculty of Engineering and Architecture, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
    2. Department of Flow, Heat and Combustion Mechanics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41, 9000, Ghent, Belgium
    3. Centre for Cardiovascular MR, UCL Institute of Child Health, London Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3JH, UK
    4. Paediatric Cardiology, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
  • 刊物类别:Engineering
  • 刊物主题:Biomedical Engineering
    Human Physiology
    Imaging and Radiology
    Computer Applications
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1741-0444
文摘
Even after successful treatment of aortic coarctation, a high risk of cardiovascular morbidity and mortality remains. Uncertainty exists on the factors contributing to this increased risk among which are the presence of (1) a residual narrowing leading to an additional resistance and (2) a less distensible zone disturbing the buffer function of the aorta. As the many interfering factors and adaptive physiological mechanisms present in vivo prohibit the study of the isolated impact of these individual factors, a numerical fluid–structure interaction model is developed to predict central hemodynamics in coarctation treatment. The overall impact of a stiffening on the hemodynamics is limited, with a small increase in systolic pressure (up to 8 mmHg) proximal to the stiffening which is amplified with increasing stiffening and length. A residual narrowing, on the other hand, affects the hemodynamics significantly. For a short segment (10 mm), the combination of a stiffening and narrowing (coarctation index 0.5) causes an increase in systolic pressure of 58 mmHg, with 31 mmHg due to narrowing and an additional 27 mmHg due to stiffening. For a longer segment (25 mm), an increase in systolic pressure of 50 mmHg is found, of which only 9 mmHg is due to stiffening.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700