A Technical Assessment of the Utility of Reverse Phase Protein Arrays for the Study of the Functional Proteome in Non-microdissected Human Breast Cancers
详细信息    查看全文
  • 作者:Bryan T. Hennessy (1) (2) (3)
    Yiling Lu (4)
    Ana Maria Gonzalez-Angulo (3) (4) (5)
    Mark S. Carey (4)
    Simen Myhre (6) (7)
    Zhenlin Ju (8)
    Michael A. Davies (9)
    Wenbin Liu (8)
    Kevin Coombes (8)
    Funda Meric-Bernstam (10)
    Isabelle Bedrosian (10)
    Mollianne McGahren (4)
    Roshan Agarwal (4)
    Fan Zhang (4)
    Jens Overgaard (11)
    Jan Alsner (11)
    Richard M. Neve (12)
    Wen-Lin Kuo (12)
    Joe W. Gray (12)
    Anne-Lise Borresen-Dale (6) (7)
    Gordon B. Mills (3) (4)
  • 关键词:Functional proteome ; RPPA ; Breast cancer ; Kinase signaling ; Steroid signaling
  • 刊名:Clinical Proteomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:6
  • 期:4
  • 页码:129-151
  • 全文大小:1261KB
  • 参考文献:1. S?rlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869-4. CrossRef
    2. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999-009. CrossRef
    3. Ayers M, Symmans WF, Stec J, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol. 2004;22:2284-3. CrossRef
    4. Sj?blom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268-4. CrossRef
    5. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937-7. CrossRef
    6. Bullinger L, D?hner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350:1605-6. CrossRef
    7. Jazaeri AA, Yee CJ, Sotiriou C, Brantley KR, Boyd J, Liu ET. Gene expression profiles of BRCA1-linked, BRCA2-linked, and sporadic ovarian cancers. J Natl Cancer Inst. 2002;94:990-000.
    8. Pedersen N, Mortensen S, S?rensen SB, et al. Transcriptional gene expression profiling of small cell lung cancer cells. Cancer Res. 2003;63:1943-3.
    9. Yu YP, Landsittel D, Jing L, et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004;22:2790-. CrossRef
    10. Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004;41:150-3. CrossRef
    11. Tibes R, Qiu Y, Lu Y, et al. Reverse phase protein array (RPPA): validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5:2512-1. CrossRef
    12. Sheehan KM, Calvert VS, Kay EW, et al. Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics. 2005;4:346-5. CrossRef
    13. Hennessy BT, Lu Y, Poradosu E, et al. Pharmacodynamic markers of perifosine efficacy. Clin Cancer Res. 2007;13:7421-1. CrossRef
    14. Cheng KW, Lu Y, Mills GB. Assay of Rab25 function in ovarian and breast cancers. Methods Enzymol. 2005;403:202-5. CrossRef
    15. Charboneau L, Tory H, Chen T, et al. Utility of reverse phase protein arrays: applications to signalling pathways and human body arrays. Brief Funct Genomic Proteomic. 2002;1:305-5. CrossRef
    16. Iwamaru A, Kondo Y, Iwado E, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007;26:1840-1. CrossRef
    17. Wulfkuhle JD, Edmiston KH, Liotta LA, Petricoin 3rd EF. Technology insight: pharmacoproteomics for cancer—promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol. 2006;3:256-8. CrossRef
    18. Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, Mills GB. Non-parametric quantification of protein lysate arrays. Bioinformatics. 2007;23:1986-4. CrossRef
    19. Paweletz CP, Charboneau L, Bichsel VE, et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 2001;20:1981-. CrossRef
    20. Grubb RL, Deng J, Pinto PA, et al. Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures. J Proteome Res. 2009;8:3044-4. CrossRef
    21. Sheehan KM, Gulmann C, Eichler GS, et al. Signal pathway profiling of epithelial and stromal compartments of colonic carcinoma reveal epithelial-mesenchymal transition. Oncogene. 2008;27:323-1. CrossRef
    22. Ornstein DK, Gillespie JW, Paweletz CP, et al. Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis. 2000;21:2235-2. CrossRef
    23. Emmert-Buck MR, Gillespie JW, Paweletz CP, et al. An approach to proteomic analysis of human tumors. Mol Carcinog. 2000;27:158-5. CrossRef
    24. Nagata Y, Lan KH, Zhou X, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117-7. CrossRef
    25. Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554-. CrossRef
    26. Monni O, Barlund M, Mousses S, et al. Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proc Natl Acad Sci USA. 2001;98:5711-. CrossRef
    27. Bellacosa A, de Feo D, Godwin AK, et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995;64:280-. CrossRef
    28. Espina V, Woodhouse EC, Wulfkuhle J, Asmussen HD, Petricoin 3rd EF, Liotta LA. Protein microarray detection strategies: focus on direct detection technologies. J Immunol Methods. 2004;290:121-3. CrossRef
    29. Neve RM, Chin K, Fridlyand J, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515-7. CrossRef
    30. Stoica GE, Franke TF, Moroni M, et al. Effect of estradiol on estrogen receptor-alpha gene expression and activity can be modulated by the ErbB2/PI 3-K/Akt pathway. Oncogene. 2003;22:7998-011. CrossRef
    31. Bachman KE, Argani P, Samuels Y, et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3:772-. CrossRef
    32. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926-5. CrossRef
    33. Knuefermann C, Lu Y, Liu B, et al. HER2/PI-3?K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene. 2003;22:3205-2. CrossRef
    34. Liang K, Jin W, Knuefermann C, et al. Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy. Mol Cancer Ther. 2003;2:353-0.
    35. Brown RE. HER-2/neu-positive breast carcinoma: molecular concomitants by proteomic analysis and their therapeutic implications. Ann Clin Lab Sci. 2002;32:12-1.
    36. Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL. Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem. 2004;279:24505-3. CrossRef
    37. Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem. 2000;275:36803-0. CrossRef
    38. Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM. The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc Natl Acad Sci USA. 2005;102:18443-. CrossRef
    39. Ellis MJ, Coop A, Singh B, et al. Letrozole is more effective neoadjuvant endocrine therapy than tamoxifen for ErbB-1- and/or ErbB-2-positive, estrogen receptor-positive primary breast cancer: evidence from a phase III randomized trial. J Clin Oncol. 2001;19:3808-6.
    40. Smith IE, Dowsett M, Ebbs SR, et al. Neoadjuvant treatment of postmenopausal breast cancer with anastrozole, tamoxifen, or both in combination: the immediate preoperative anastrozole, tamoxifen, or combined with tamoxifen (IMPACT) multicenter double-blind randomized trial. J Clin Oncol. 2005;23:5108-6. CrossRef
    41. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11:155-8.
    42. Jirstr?m K, Stendahl M, Rydén L, et al. Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification. Cancer Res. 2005;65:8009-6.
    43. Yamashita H, Toyama T, Nishio M, et al. p53 protein accumulation predicts resistance to endocrine therapy and decreased post-relapse survival in metastatic breast cancer. Breast Cancer Res. 2006;8:R48. CrossRef
    44. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817-6. CrossRef
    45. Danish Breast Cancer Cooperative Group, Nielsen HM, Overgaard M, Grau C, Jensen AR, Overgaard J. Study of failure pattern among high-risk breast cancer patients with or without postmastectomy radiotherapy in addition to adjuvant systemic therapy: long-term results from the Danish Breast Cancer Cooperative Group DBCG 82 b and c randomized studies. J Clin Oncol. 2006;24:2268-5. CrossRef
    46. Baker AF, Dragovich T, Ihle NT, Williams R, Fenoglio-Preiser C, Powis G. Stability of phosphoprotein as a biological marker of tumor signaling. Clin Cancer Res. 2005;11:4338-0. CrossRef
    47. Espina V, Edmiston KH, Heiby M, et al. A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics. 2008;7:1998-018. CrossRef
    48. Wulfkuhle JD, Speer R, Pierobon M, et al. Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res. 2008;7:1508-7. CrossRef
    49. Petricoin 3rd EF, Bichsel VE, Calvert VS, et al. Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol. 2005;23:3614-1. CrossRef
  • 作者单位:Bryan T. Hennessy (1) (2) (3)
    Yiling Lu (4)
    Ana Maria Gonzalez-Angulo (3) (4) (5)
    Mark S. Carey (4)
    Simen Myhre (6) (7)
    Zhenlin Ju (8)
    Michael A. Davies (9)
    Wenbin Liu (8)
    Kevin Coombes (8)
    Funda Meric-Bernstam (10)
    Isabelle Bedrosian (10)
    Mollianne McGahren (4)
    Roshan Agarwal (4)
    Fan Zhang (4)
    Jens Overgaard (11)
    Jan Alsner (11)
    Richard M. Neve (12)
    Wen-Lin Kuo (12)
    Joe W. Gray (12)
    Anne-Lise Borresen-Dale (6) (7)
    Gordon B. Mills (3) (4)

    1. Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
    2. The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    3. Kleberg Center for Molecular Markers, The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    4. Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    5. Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    6. Department of Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Oslo, Norway
    7. Faculty Division, The Norwegian Radium Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
    8. Department of Bioinformatics and Computational Biology, The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    9. Department of Melanoma Medical Oncology, The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    10. Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center (MDACC), 1515 Holcombe Blvd., Houston, TX, 77030, USA
    11. Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
    12. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
  • ISSN:1559-0275
文摘
Introduction The lack of large panels of validated antibodies, tissue handling variability, and intratumoral heterogeneity potentially hamper comprehensive study of the functional proteome in non-microdissected solid tumors. The purpose of this study was to address these concerns and to demonstrate clinical utility for the functional analysis of proteins in non-microdissected breast tumors using reverse phase protein arrays (RPPA). Methods Herein, 82 antibodies that recognize kinase and steroid signaling proteins and effectors were validated for RPPA. Intraslide and interslide coefficients of variability were <15%. Multiple sites in non-microdissected breast tumors were analyzed using RPPA after intervals of up to 24?h on the benchtop at room temperature following surgical resection. Results Twenty-one of 82 total and phosphoproteins demonstrated time-dependent instability at room temperature with most variability occurring at later time points between 6 and 24?h. However, the 82-protein functional proteomic “fingerprint-was robust in most tumors even when maintained at room temperature for 24?h before freezing. In repeat samples from each tumor, intratumoral protein levels were markedly less variable than intertumoral levels. Indeed, an independent analysis of prognostic biomarkers in tissue from multiple tumor sites accurately and reproducibly predicted patient outcomes. Significant correlations were observed between RPPA and immunohistochemistry. However, RPPA demonstrated a superior dynamic range. Classification of 128 breast cancers using RPPA identified six subgroups with markedly different patient outcomes that demonstrated a significant correlation with breast cancer subtypes identified by transcriptional profiling. Conclusion Thus, the robustness of RPPA and stability of the functional proteomic “fingerprint-facilitate the study of the functional proteome in non-microdissected breast tumors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700