The instability of the BTB-KELCH protein Gigaxonin causes Giant Axonal Neuropathy and constitutes a new penetrant and specific diagnostic test
详细信息    查看全文
  • 作者:Alexia Boizot (1) (2)
    Yasmina Talmat-Amar (1) (2)
    Deborah Morrogh (3)
    Nancy L Kuntz (4)
    Cecile Halbert (5)
    Brigitte Chabrol (5)
    Henry Houlden (6)
    Tanya Stojkovic (7)
    Brenda A Schulman (8)
    Bernd Rautenstrauss (10) (9)
    Pascale Bomont (1) (2)

    1. Atip-Avenir team
    ; Inserm U1051 ; Institut des Neurosciences de Montpellier ; Montpellier ; France
    2. Universit茅 de Montpellier1&2
    ; Montpellier ; France
    3. NE Thames Regional Genetics Service
    ; Great Ormond Street Hospital ; York House Queen Square ; London ; UK
    4. Northwestern University Feinberg School of Medicine
    ; Chicago ; USA
    5. Service de Neurologie P茅diatrique
    ; H么pital d鈥橢nfants ; CHU Timone ; Marseille ; France
    6. Department of Molecular Neuroscience and The MRC centre for Neuromuscular Diseases
    ; Institute of Neurology ; Queen Square ; London ; UK
    7. AP-HP
    ; G-H Piti茅-Salp锚tri猫re ; Institut de Myologie ; Paris ; France
    8. Howard Hughes Medical Institute
    ; Department of Structural Biology ; St. Jude Children鈥檚 Research Hospital ; Memphis ; Tennessee ; USA
    10. Ludwig-Maximilians-University Friedrich-Baur-Institut
    ; M眉nchen ; Germany
    9. Medizinisch Genetisches Zentrum Bayerstrasse
    ; M眉nchen ; Germany
  • 关键词:CMT2 ; GAN ; Diagnosis ; Gigaxonin ; E3 ligase ; Modelization ; Instability
  • 刊名:Acta Neuropathologica Communications
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:2
  • 期:1
  • 全文大小:1,087 KB
  • 参考文献:1. Bomont, P, Cavalier, L, Blondeau, F, Ben Hamida, C, Belal, S, Tazir, M, Demir, E, Topaloglu, H, Korinthenberg, R, Tuysuz, B, Landrieu, P, Hentati, F, Koenig, M (2000) The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26: pp. 370-374 <a class="external" href="http://dx.doi.org/10.1038/81701" target="_blank" title="It opens in new window">CrossRefa>
    2. Asbury, AK, Gale, MK, Cox, SC, Baringer, JR, Berg, BO (1972) Giant axonal neuropathy: a unique case with segmental neurofilamentous masses. Acta Neuropathol 20: pp. 237-247 <a class="external" href="http://dx.doi.org/10.1007/BF00686905" target="_blank" title="It opens in new window">CrossRefa>
    3. Berg, BO, Rosenberg, SH, Asbury, AK (1972) Giant axonal neuropathy. Pediatrics 49: pp. 894-899
    4. Azzedine, H, Ravise, N, Verny, C, Gabreels-Festen, A, Lammens, M, Grid, D, Vallat, JM, Durosier, G, Senderek, J, Nouioua, S, Hamadouche, T, Bouhouche, A, Guilbot, A, Stendel, C, Ruberg, M, Brice, A, Birouk, N, Dubourg, O, Tazir, M, LeGuern, E (2006) Spine deformities in Charcot-Marie-Tooth 4C caused by SH3TC2 gene mutations. Neurology 67: pp. 602-606 <a class="external" href="http://dx.doi.org/10.1212/01.wnl.0000230225.19797.93" target="_blank" title="It opens in new window">CrossRefa>
    5. Lus, G, Nelis, E, Jordanova, A, Lofgren, A, Cavallaro, T, Ammendola, A, Melone, MA, Rizzuto, N, Timmerman, V, Cotrufo, R, De Jonghe, P (2003) Charcot-Marie-Tooth disease with giant axons: a clinicopathological and genetic entity. Neurology 61: pp. 988-990 <a class="external" href="http://dx.doi.org/10.1212/WNL.61.7.988" target="_blank" title="It opens in new window">CrossRefa>
    6. Prineas, JW, Ouvrier, RA, Wright, RG, Walsh, JC, McLeod, JG (1976) Giant axonal neuropathy: a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol 35: pp. 458-470 <a class="external" href="http://dx.doi.org/10.1097/00005072-197607000-00006" target="_blank" title="It opens in new window">CrossRefa>
    7. Bomont, P, Koenig, M (2003) Intermediate filament aggregation in fibroblasts of giant axonal neuropathy patients is aggravated in non dividing cells and by microtubule destabilization. Hum Mol Genet 12: pp. 813-822 <a class="external" href="http://dx.doi.org/10.1093/hmg/ddg092" target="_blank" title="It opens in new window">CrossRefa>
    8. Cleveland, DW, Yamanaka, K, Bomont, P (2009) Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway. Hum Mol Genet 18: pp. 1384-1394 <a class="external" href="http://dx.doi.org/10.1093/hmg/ddp044" target="_blank" title="It opens in new window">CrossRefa>
    9. Dequen, F, Bomont, P, Gowing, G, Cleveland, DW, Julien, JP (2008) Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 107: pp. 253-264 <a class="external" href="http://dx.doi.org/10.1111/j.1471-4159.2008.05601.x" target="_blank" title="It opens in new window">CrossRefa>
    10. Ganay, T, Boizot, A, Burrer, R, Chauvin, JP, Bomont, P (2011) Sensory-motor deficits and neurofilament disorganization in gigaxonin-null mice. Mol Neurodegene 6: pp. 25 <a class="external" href="http://dx.doi.org/10.1186/1750-1326-6-25" target="_blank" title="It opens in new window">CrossRefa>
    11. Furukawa, M, He, YJ, Borchers, C, Xiong, Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5: pp. 1001-1007 <a class="external" href="http://dx.doi.org/10.1038/ncb1056" target="_blank" title="It opens in new window">CrossRefa>
    12. Pintard, L, Willis, JH, Willems, A, Johnson, JL, Srayko, M, Kurz, T, Glaser, S, Mains, PE, Tyers, M, Bowerman, B, Peter, M (2003) The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425: pp. 311-316 <a class="external" href="http://dx.doi.org/10.1038/nature01959" target="_blank" title="It opens in new window">CrossRefa>
    13. Xu, L, Wei, Y, Reboul, J, Vaglio, P, Shin, TH, Vidal, M, Elledge, SJ, Harper, JW (2003) BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425: pp. 316-321 <a class="external" href="http://dx.doi.org/10.1038/nature01985" target="_blank" title="It opens in new window">CrossRefa>
    14. Mahammad, S, Murthy, SN, Didonna, A, Grin, B, Israeli, E, Perrot, R, Bomont, P, Julien, JP, Kuczmarski, E, Opal, P, Goldman, RD (2013) Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest 123: pp. 1964-1975 <a class="external" href="http://dx.doi.org/10.1172/JCI66387" target="_blank" title="It opens in new window">CrossRefa>
    15. Bomont, P, Ioos, C, Yalcinkaya, C, Korinthenberg, R, Vallat, JM, Assami, S, Munnich, A, Chabrol, B, Kurlemann, G, Tazir, M, Koenig, M (2003) Identification of seven novel mutations in the GAN gene. Hum Mutat 21: pp. 446 <a class="external" href="http://dx.doi.org/10.1002/humu.9122" target="_blank" title="It opens in new window">CrossRefa>
    16. Buysse, K, Vergult, S, Mussche, S, Ceuterick-de Groote, C, Speleman, F, Menten, B, Lissens, W, Van Coster, R (2010) Giant axonal neuropathy caused by compound heterozygosity for a maternally inherited microdeletion and a paternal mutation within the GAN gene. Am J Med Genet A 152A: pp. 2802-2804 <a class="external" href="http://dx.doi.org/10.1002/ajmg.a.33508" target="_blank" title="It opens in new window">CrossRefa>
    17. Zhuang, M, Calabrese, MF, Liu, J, Waddell, MB, Nourse, A, Hammel, M, Miller, DJ, Walden, H, Duda, DM, Seyedin, SN, Hoggard, T, Harper, JW, White, KP, Schulman, BA (2009) Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell 36: pp. 39-50 <a class="external" href="http://dx.doi.org/10.1016/j.molcel.2009.09.022" target="_blank" title="It opens in new window">CrossRefa>
    18. Canning, P, Cooper, CD, Krojer, T, Murray, JW, Pike, AC, Chaikuad, A, Keates, T, Thangaratnarajah, C, Hojzan, V, Marsden, BD, Gileadi, O, Knapp, S, von Delft, F, Bullock, AN (2013) Structural basis for Cul3 assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288: pp. 7803-7814 <a class="external" href="http://dx.doi.org/10.1074/jbc.M112.437996" target="_blank" title="It opens in new window">CrossRefa>
    19. Errington, WJ, Khan, MQ, Bueler, SA, Rubinstein, JL, Chakrabartty, A, Prive, GG (2012) Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure 20: pp. 1141-1153 <a class="external" href="http://dx.doi.org/10.1016/j.str.2012.04.009" target="_blank" title="It opens in new window">CrossRefa>
    20. Lo, SC, Li, X, Henzl, MT, Beamer, LJ, Hannink, M (2006) Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J 25: pp. 3605-3617 <a class="external" href="http://dx.doi.org/10.1038/sj.emboj.7601243" target="_blank" title="It opens in new window">CrossRefa>
    21. Padmanabhan, B, Tong, KI, Ohta, T, Nakamura, Y, Scharlock, M, Ohtsuji, M, Kang, MI, Kobayashi, A, Yokoyama, S, Yamamoto, M (2006) Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol Cell 21: pp. 689-700 <a class="external" href="http://dx.doi.org/10.1016/j.molcel.2006.01.013" target="_blank" title="It opens in new window">CrossRefa>
    22. Roth, LA, Johnson-Kerner, BL, Marra, JD, Lamarca, NH, Sproule, DM (2014) The absence of curly hair is associated with a milder phenotype in Giant Axonal Neuropathy. Neuromuscul Disord 24: pp. 48-55 <a class="external" href="http://dx.doi.org/10.1016/j.nmd.2013.06.007" target="_blank" title="It opens in new window">CrossRefa>
    23. Tong, KI, Padmanabhan, B, Kobayashi, A, Shang, C, Hirotsu, Y, Yokoyama, S, Yamamoto, M (2007) Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Mol Cell Biol 27: pp. 7511-7521 <a class="external" href="http://dx.doi.org/10.1128/MCB.00753-07" target="_blank" title="It opens in new window">CrossRefa>
    24. Demir, E, Bomont, P, Erdem, S, Cavalier, L, Demirci, M, Kose, G, Muftuoglu, S, Cakar, AN, Tan, E, Aysun, S, Topcu, M, Guicheney, P, Koenig, M, Topaloglu, H (2005) Giant axonal neuropathy: clinical and genetic study in six cases. J Neurol Neurosurg Psychiatry 76: pp. 825-832 <a class="external" href="http://dx.doi.org/10.1136/jnnp.2003.035162" target="_blank" title="It opens in new window">CrossRefa>
    25. Ben Hamida, M, Hentati, F, Ben Hamida, C (1990) Giant axonal neuropathy with inherited multisystem degeneration in a Tunisian kindred. Neurology 40: pp. 245-250 <a class="external" href="http://dx.doi.org/10.1212/WNL.40.2.245" target="_blank" title="It opens in new window">CrossRefa>
    26. Zemmouri, R, Azzedine, H, Assami, S, Kitouni, N, Vallat, JM, Maisonobe, T, Hamadouche, T, Kessaci, M, Mansouri, B, Le Guern, E, Grid, D, Tazir, M (2000) Charcot-Marie-Tooth 2-like presentation of an Algerian family with giant axonal neuropathy. Neuromuscul Disord 10: pp. 592-598 <a class="external" href="http://dx.doi.org/10.1016/S0960-8966(00)00141-3" target="_blank" title="It opens in new window">CrossRefa>
    27. Petroski, MD, Deshaies, RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6: pp. 9-20 <a class="external" href="http://dx.doi.org/10.1038/nrm1547" target="_blank" title="It opens in new window">CrossRefa>
  • 刊物主题:Neurosciences;
  • 出版者:BioMed Central
  • ISSN:2051-5960
文摘
Background The BTB-KELCH protein Gigaxonin plays key roles in sustaining neuron survival and cytoskeleton architecture. Indeed, recessive mutations in the Gigaxonin-encoding gene cause Giant Axonal Neuropathy (GAN), a severe neurodegenerative disorder characterized by a wide disorganization of the Intermediate Filament network. Growing evidences suggest that GAN is a continuum with the peripheral neuropathy Charcot-Marie-Tooth diseases type 2 (CMT2). Sharing similar sensory-motor alterations and aggregation of Neurofilaments, few reports have revealed that GAN and some CMT2 forms can be misdiagnosed on clinical and histopathological examination. The goal of this study is to propose a new differential diagnostic test for GAN/CMT2. Moreover, we aim at identifying the mechanisms causing the loss-of-function of Gigaxonin, which has been proposed to bind CUL3 and substrates as part of an E3 ligase complex. Results We establish that determining Gigaxonin level constitutes a very valuable diagnostic test in discriminating new GAN cases from clinically related inherited neuropathies. Indeed, in a set of seven new families presenting a neuropathy resembling GAN/CMT2, only five exhibiting a reduced Gigaxonin abundance have been subsequently genetically linked to GAN. Generating the homology modeling of Gigaxonin, we suggest that disease mutations would lead to a range of defects in Gigaxonin stability, impairing its homodimerization, BTB or KELCH domain folding, or CUL3 and substrate binding. We further demonstrate that regardless of the mutations or the severity of the disease, Gigaxonin abundance is severely reduced in all GAN patients due to both mRNA and protein instability mechanisms. Conclusions In this study, we developed a new penetrant and specific test to diagnose GAN among a set of individuals exhibiting CMT2 of unknown etiology to suggest that the prevalence of GAN is probably under-evaluated among peripheral neuropathies. We propose to use this new test in concert with the clinical examination and prior to the systematic screening of GAN mutations that has shown strong limitations for large deletions. Combining the generation of the structural modeling of Gigaxonin to an analysis of Gigaxonin transcripts and proteins in patients, we provide the first evidences of the instability of this E3 ligase adaptor in disease.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700