Single-photon detection and its applications
详细信息    查看全文
  • 作者:Yan Liang (1) (2)
    HePing Zeng (1) (2)
  • 关键词:quantum optics ; photodetection ; avalanche photodiode ; frequency up ; conversion
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:57
  • 期:7
  • 页码:1218-1232
  • 全文大小:
  • 参考文献:1. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145鈥?95 CrossRef
    2. Zhou C Y, Wu G, Chen X L, et al. Quantum key distribution in 50-km optic fibers. Sci China Ser G-Phys Mech Astron, 2004, 47: 182鈥?88 CrossRef
    3. Spanoudaki V C, Mann A B, Otte A N, et al. Use of single photon counting detector arrays in combined PET/MR: Characterization of LYSO-SiPM detector modules and comparison with a LSO-APD detector. J Instrum, 2007, 2: 12002 CrossRef
    4. Lacaita A, Francese P, Cova S, et al. Single-photon optical-time-domain reflectometer at 1.3 渭m with 5-cm resolution and high sensitivity. Opt Lett, 1993, 18: 1110鈥?112 CrossRef
    5. Suhling K, Siegel J, Phillips D, et al. Imaging the environment of green fluorescent protein. Biophys J, 2002, 83: 3589鈥?595 CrossRef
    6. Hadfield R H. Single-photon detectors for optical quantum information applications. Nat Photonics, 2009, 3: 696鈥?05 CrossRef
    7. Wu G, Jian Y, Wu E, et al. Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode. Opt Express, 2009, 17: 18782鈥?8787 CrossRef
    8. Keller O. Space-time description of transverse photons: Near-field aspects. Sci China-Phys Mech Astron, 2012, 55: 1389鈥?393 CrossRef
    9. Liang Y, Jian Y, Chen X L, et al. Room-temperature single-photon detector based on InGaAs/InP avalanche photodiode with multichannel counting ability. IEEE Photon Tech Lett, 2011, 23: 115鈥?17 CrossRef
    10. Gu X, Huang K, Li Y, et al. Temporal and spectral control of single-photon frequency upconversion for pulsed radiation. Appl Phys Lett, 2010, 96: 131111 CrossRef
    11. Li H J, Wang Y W, Wei L F, et al. Experimental demonstrations of high- / Q superconducting coplanar waveguide resonators. Chin Sci Bull, 2013, 58: 2413鈥?417 CrossRef
    12. Jiang Y, Liang M, Jin B B, et al. A simple Fourier transform spectrometer for terahertz applications. Chin Sci Bull, 2012, 57: 573鈥?78 CrossRef
    13. You L X, Shen X F, Yang X Y. Single photon response of superconducting nanowire single photon detector. Chin Sci Bull, 2010, 55: 441鈥?45 CrossRef
    14. Zhang L B, Zhong Y Y, Kang L, et al. Detection of infrared photons with a superconductor. Chin Sci Bull, 2009, 54: 2150鈥?153 CrossRef
    15. Chen S J, Liu D K, Zhang W X, et al. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire single-photon detection system. Appl Opt, 2013, 52: 3241鈥?245 CrossRef
    16. Gansen E J, Rowe M A, Greene M B, et al. Photon-number-discriminating detection using a quantumdot, optically gated, field-effect transistor. Nat Photonics, 2007, 1: 585鈥?88 CrossRef
    17. Ren M, Gu X R, Liang Y, et al. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt Express, 2011, 19: 13497鈥?3502 CrossRef
    18. Xu L L, Wu E, Gu X R, et al. High efficiency InGaAs/InP-based single photon detector with high speed. Appl Phys Lett, 2009, 94: 161106 CrossRef
    19. Jian Y, Wu E, Wu G, et al. Optically self-balanced InGaAs-InP avalanche photodiode for Infrared single-photon detection. IEEE Photon Tech Lett, 2010, 22: 173鈥?75 CrossRef
    20. Yuan Z L, Kardynal B E, Sharpe A W, et al. High speed single photon detection in the near infrared. Appl Phys Lett, 2007, 91: 041114 CrossRef
    21. Chen X L, Wu E, Xu L L, et al. Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates. Appl Phys Lett, 2009, 95: 131118 CrossRef
    22. Namekata N, Sasamori S, Inoue S. 800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating. Opt Express, 2006, 14: 10043鈥?0049 CrossRef
    23. Namekata N, Adachi S, Inoue S. 1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode. Opt Express, 2009, 17: 6275鈥?282 CrossRef
    24. Krichel N, McCarthy A, Buller G. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances. Opt Express, 2010, 18: 9192鈥?206 CrossRef
    25. Zhang Q, Langrock C, Fejer M, et al. Waveguide-based single-pixel upconversion infrared spectrometer. Opt Express, 2008, 16: 19557鈥?9561 CrossRef
    26. Dong H, Pan H, Li Y, et al. Efficient single-photon frequency upconversion at 1.06 渭m with ultralow background counts. Appl Phys Lett, 2008, 93: 071101 CrossRef
    27. Huang K, Gu X, Pan H, et al. Synchronized fiber lasers for efficient coincidence single-photon frequency upconversion. IEEE J Sel Top Quantum Electron, 2012, 18: 562鈥?66 CrossRef
    28. Gabriel C, Wittmann C, Sych D, et al. A generator for unique quantum random numbers based on vacuum states. Nat Photonics, 2010, 4: 711鈥?15 CrossRef
    29. Liang Y, Ren M, Wu E, et al. High-speed photon-number resolving with sinusoidally gated multipixel photon counters. IEEE Photon Tech Lett, 2012, 24: 1852鈥?855 CrossRef
    30. Akiba M, Inagaki K, Tsujino K. Photon number resolving SiPM detector with 1 GHz count rate. Opt Express, 2012, 20: 2779鈥?788 CrossRef
    31. Restellil A, Bienfang J C, Migdall A L. Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz. Appl Phys Lett, 2013, 102: 141104 CrossRef
    32. Chen X, Wu E, Wu G, et al. Low-noise high-speed InGaAs/InP-based single-photon detector. Opt Express, 2010, 18: 7010鈥?018 CrossRef
    33. Liang Y, Wu E, Chen X, et al. Low-timing-jitter single-photon detection using 1-GHz sinusoidally gated InGaAs/InP avalanche photodiode. IEEE Photon Tech Lett, 2011, 23: 887鈥?89 CrossRef
    34. Zhou Q, Huang K, Pan H F, et al. Ultrasensitive mid-infrared up-conversion imaging at few-photon level. Appl Phys Lett, 2013, 102: 241110 CrossRef
    35. Ren M, Wu E, Liang Y, et al. Quantum random-number generator based on a photon-number-resolving detector. Phys Rev A 2011, 83: 023820 CrossRef
    36. Jian Y, Ren M, Wu E, et al. Two-bit quantum random number generator based on photon-number-resolving detection. Rev Sci Instrum, 2011, 82: 073109 CrossRef
    37. Bennett C, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. Proc Int Conf Comput Syst Signal Proc, Bangalore, India, 1984, 175鈥?79
    38. Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503 CrossRef
    39. Chen J, Wu G, Li Y, et al. Active polarization stabilization of optical fibers suitable for quantum key distribution. Opt Express, 2007, 15: 17928 CrossRef
    40. Chen J, Wu G, Xu L L, et al. Stable quantum key distribution with active polarization control based on time-division multiplexing. New J Phys, 2009, 11: 065004 CrossRef
  • 作者单位:Yan Liang (1) (2)
    HePing Zeng (1) (2)

    1. Shanghai Key Laboratory of Modern Optical System, Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
    2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
  • ISSN:1869-1927
文摘
A single-photon detector is an extremely sensitive device capable of registering photons, offering essential technical support for optics quantum information applications. We review herein our recent experimental progress in the development and application of single-photon detection techniques. Techniques based on advanced self-differencing, low-pass filtering, frequency up-conversion and photon-number-resolving are introduced for attaining high-speed, high-efficiency, low-noise single-photon detection at infrared wavelengths. The advantages of high-speed single-photon detection are discussed in some applications, such as the laser ranging and quantum key distribution. The photon-number-resolving detection is shown to support efficient quantum random number generation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700