\(\varphi \) relationship of the memristor is introduced which results helpful for simulating the new amplifiers. The nullor-based negative-feedback amplifiers with memristor are inspected by cases of study. In addition, the trans-mem conductance amplifier is widely studied with one nullor implementation, namely MOS. The implementation yields hybrid (MOS/memristor) circuits. Keywords Memristor Memristive systems Behavioral memristor model Negative-feedback amplifiers" />
A Family of Memristive-Transfer Functions of Negative-Feedback Nullor-Based Amplifiers
详细信息    查看全文
  • 作者:Carlos Hernández-Mejía ; Arturo Sarmiento-Reyes…
  • 关键词:Memristor ; Memristive systems ; Behavioral memristor model ; Negative ; feedback amplifiers
  • 刊名:Circuits, Systems, and Signal Processing
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:34
  • 期:11
  • 页码:3431-3447
  • 全文大小:1,880 KB
  • 参考文献:1.H. Abdalla, M.D. Pickett, in Spice Modeling of Memristors. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1832-835 (2011)
    2.S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008-021 (2013)MathSciNet CrossRef
    3.A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89-05 (2013)CrossRef
    4.D. Batas, H. Fiedler, A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250-55 (2011)CrossRef
    5.R. Berdan, C. Lim, A. Khiat, C. Papavassiliou, T. Prodromakis, A memristor spice model accounting for volatile characteristics of practical reRAM. IEEE Electron. Device Lett. 35(1), 135-37 (2014)CrossRef
    6.Z. Biolek, D. Biolek, V. Biolkova, Spice model of memristor with nonlinear dopant drift. Radioengineering 18, 210-14 (2004)
    7.J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, ‘Memristive-switches enable ‘stateful-logic operations via material implication. Nature 464, 873-76 (2010)CrossRef
    8.L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507-19 (1971)CrossRef
    9.L.O. Chua, SMo Kang, Memristive devices and systems. IEEE Proc. 64(2), 209-23 (1976)MathSciNet CrossRef
    10.L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765-83 (2011)CrossRef
    11.S.H. Jo, K.-H. Kim, W. Lu, High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870-74 (2009)CrossRef
    12.S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297-301 (2010)CrossRef
    13.M. Liu, H. Yu, W. Wang, in FPAA Based on Integration of CMOS and Nanojunction Devices for Neuromorphic Applications. Nano-Net, vol. 3 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, Berlin, 2009), pp. 44-8
    14.M. Mahvash, A.C. Parker, in A Memristor Spice Model for Designing Memristor Circuits. 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 989-92 (2010)
    15.F. Maloberti, in Analog Design for CMOS VLSI Systems. The Kluwer International Series in Engineering and Computer Science. VLSI, Computer Architecture and Digital Signal Processing (Springer, Berlin, 2001)
    16.B. Mouttet, in Proposal for Memristors in Signal Processing. Nano-Net, vol. 3 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, Berlin, 2009), pp. 11-3
    17.E.H. Nordholt, in Design of High-Performance Negative-Feedback Amplifiers. Studies in Electrical and Electronic Engineering (Elsevier, Amsterdam, 1983)
    18.G. Palumbo, S. Pennisi, Feedback Amplifiers: Theory and Design (Springer, Berlin, 2002)
    19.Y.V. Pershin, M. Di Ventra. SPICE Model of Memristive Devices with Threshold. arXiv e-prints (2012)
    20.Y.V. Pershin, S. La Fontaine, Massimiliano Di Ventra, Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009). doi:10.-103/?PhysRevE.-0.-21926
    21.Y.V. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57(8), 1857-864 (2010)MathSciNet CrossRef
    22.A. Rak, G. Cserey, Macromodeling of the memristor in spice. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632-36 (2010)CrossRef
    23.S. Shin, K. Kim, S.-M.S. Kang, Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266-74 (2011)CrossRef
    24.S. Shin, L. Zheng, G. Weickhardt, S. Cho, S.-M. Kang, Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuits Syst. Mag 13(2), 42-5 (2013)CrossRef
    25.G.S. Snider, Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36), 365202 (2007). doi:10.-088/-957-4484/-8/-6/-65202
    26.C.K. Tse (ed.), Memristors: theory and applications (special issue). IEEE Circuits Syst. Mag. 13(2) (2013). doi:10.-109/?MCAS.-013.-256252
    27.J. Stoffels, Automation in High-Performance Negative Feedback Amplifier Design (Technische Universiteit Delft, Delft, 1988)
    28.B.D. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80-3 (2008)CrossRef
    29.C.J.M. Verhoeven, G.L.E. Monna, Structured Electronic Design: Negative-Feedback Amplifiers (Springer, Berlin, 2003)CrossRef
    30.R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833-40 (2007)CrossRef
    31.R. Williams, How we found the missing memristor. IEEE Spectr. 45(12), 28-5 (2008)CrossRef
    32.J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, R.S. Williams, D.R. Stewart, Memristive switching mechanism for metal/oxide/meta
  • 作者单位:Carlos Hernández-Mejía (1)
    Arturo Sarmiento-Reyes (1)
    Héctor Vázquez-Leal (2)

    1. Electronics Department, INAOE, P.O. Box 51, 72000, Puebla, Pue., Mexico
    2. Facultad de Instrumentación y Ciencias Atmosféricas Maestría en Ingeniería Electrónica y Computación, Universidad Veracruzana, Xalapa, Ver., Mexico
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
  • 出版者:Birkh盲user Boston
  • ISSN:1531-5878
文摘
Memristors, memristive systems and mem-elements have been introduced in recent years as key devices for featuring novel possibilities for signal processing both digital and analog. The variable resistance of the memristor has been used as a powerful feature for the realization of new circuits. In this paper, the memristor is applied to the design of nullor-based negative-feedback amplifiers. The principal result of this application consists in the generation of a new family of memristive-transfer functions for all types of amplifiers: voltage, transconductance, transresistance and current. This novel idea represents the new version of the conventional negative-feedback amplifiers and introduces the use of the memristor as feedback element. A behavioral model based on the \(q\)-span class="InlineEquation" id="IEq2">\(\varphi \) relationship of the memristor is introduced which results helpful for simulating the new amplifiers. The nullor-based negative-feedback amplifiers with memristor are inspected by cases of study. In addition, the trans-mem conductance amplifier is widely studied with one nullor implementation, namely MOS. The implementation yields hybrid (MOS/memristor) circuits. Keywords Memristor Memristive systems Behavioral memristor model Negative-feedback amplifiers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700