In vivo comparison of biomineralized scaffold-directed osteogenic differentiation of human embryonic and mesenchymal stem cells
详细信息    查看全文
  • 作者:Cai Wen ; Heemin Kang ; Yu-Ru V. Shih…
  • 关键词:Embryonic stem cells ; Mesenchymal stem cells ; In vivo osteogenic differentiation ; Biomineralized scaffold ; Bone tissue engineering ; Calcium phosphate
  • 刊名:Drug Delivery and Translational Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:6
  • 期:2
  • 页码:121-131
  • 全文大小:2,417 KB
  • 参考文献:1.Gamie Z, MacFarlane RJ, Tomkinson A, Moniakis A, Tran GT, Gamie Y, et al. Skeletal tissue engineering using mesenchymal or embryonic stem cells: clinical and experimental data. Expert Opin Biol Ther. 2014;14(11):1611–39.CrossRef PubMed
    2.Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem Cell Res Ther. 2010;1(10):1–10.
    3.Seong JM, Kim B-C, Park J-H, Kwon IK, Mantalaris A, Hwang Y-S. Stem cells in bone tissue engineering. Biomed Mater. 2010;5(6):062001.CrossRef PubMed
    4.Varghese S, Hwang NS, Ferran A, Hillel A, Theprungsirikul P, Canver AC, et al. Engineering musculoskeletal tissues with human embryonic germ cell derivatives. Stem Cells. 2010;28(4):765–74.CrossRef PubMed
    5.Hwang NS, Varghese S, Lee HJ, Zhang Z, Elisseeff J. Biomaterials directed in vivo osteogenic differentiation of mesenchymal cells derived from human embryonic stem cells. Tissue Eng A. 2013;19(15-16):1723–32.CrossRef
    6.de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110(21):8680–5.CrossRef PubMed PubMedCentral
    7.Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS. Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells. 2006;24(4):835–43.CrossRef PubMed
    8.Ahn SE, Kim S, Park KH, Moon SH, Lee HJ, Kim GJ, et al. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem Biophys Res Commun. 2006;340(2):403–8.CrossRef PubMed
    9.Hwang NS, Zhang C, Hwang YS, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. Wiley Interdiscip Rev Syst Biol Med. 2009;1(1):97–106.CrossRef PubMed
    10.Shimko DA, Burks CA, Dee KC, Nauman EA. Comparison of in vitro mineralization by murine embryonic and adult stem cells cultured in an osteogenic medium. Tissue Eng. 2004;10(9-10):1386–98.CrossRef PubMed
    11.Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G, et al. Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci. 2012;109(22):8705–9.CrossRef PubMed PubMedCentral
    12.Both SK, van Apeldoorn AA, Jukes JM, Englund MC, Hyllner J, van Blitterswijk CA, et al. Differential bone-forming capacity of osteogenic cells from either embryonic stem cells or bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2011;5(3):180–90.CrossRef PubMed
    13.Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC, et al. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells. 2011;29(2):206–16.CrossRef PubMed PubMedCentral
    14.Levi B, Hyun JS, Montoro DT, Lo DD, Chan CK, Hu S, et al. In vivo directed differentiation of pluripotent stem cells for skeletal regeneration. Proc Natl Acad Sci U S A. 2012;109(50):20379–84.CrossRef PubMed PubMedCentral
    15.Peng Y, Kang Q, Luo Q, Jiang W, Si W, Liu BA, et al. Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J Biol Chem. 2004;279(31):32941–9.CrossRef PubMed
    16.Friedman MS, Long MW, Hankenson KD. Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem. 2006;98(3):538–54.CrossRef PubMed
    17.Kawaguchi J, Mee PJ, Smith AG. Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone. 2005;36(5):758–69.CrossRef PubMed
    18.Brey DM, Motlekar NA, Diamond SL, Mauck RL, Garino JP, Burdick JA. High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation. Biotechnol Bioeng. 2011;108(1):163–74.CrossRef PubMed
    19.Phadke A, Shih YRV, Varghese S. Mineralized synthetic matrices as an instructive microenvironment for osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci. 2012;12(8):1022–32.CrossRef PubMed
    20.Madl CM, Mehta M, Duda GN, Heilshorn SC, Mooney DJ. Presentation of BMP-2 mimicking peptides in 3D hydrogels directs cell fate commitment in osteoblasts and mesenchymal stem cells. Biomacromolecules. 2014;15(2):445–55.CrossRef PubMed PubMedCentral
    21.Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, et al. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med. 2010;2(45):45ra60.CrossRef PubMed PubMedCentral
    22.Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater. 2014;13(6):645–52.CrossRef PubMed PubMedCentral
    23.Cameron K, Travers P, Chander C, Buckland T, Campion C, Noble B. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. J Biomed Mater Res A. 2013;101(1):13–22.CrossRef PubMed
    24.Müller P, Bulnheim U, Diener A, Lüthen F, Teller M, Klinkenberg ED, et al. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med. 2008;12(1):281–91.CrossRef PubMed PubMedCentral
    25.Kang H, Wen C, Hwang Y, Shih Y-RV, Kar M, Seo SW, et al. Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells. J Mater Chem B. 2014;2(34):5676–88.CrossRef
    26.Kang H, Shih Y-RV, Hwang Y, Wen C, Rao V, Seo T, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014;10(12):4961–70.CrossRef PubMed PubMedCentral
    27.LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742–53.CrossRef PubMed
    28.Chai YC, Roberts SJ, Desmet E, Kerckhofs G, van Gastel N, Geris L, et al. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers. Biomaterials. 2012;33(11):3127–42.CrossRef PubMed
    29.Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, et al. Engineering the cell–material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 2011;32(15):3700–11.CrossRef PubMed
    30.Lin S, Sangaj N, Razafiarison T, Zhang C, Varghese S. Influence of physical properties of biomaterials on cellular behavior. Pharm Res. 2011;28(6):1422–30.CrossRef PubMed PubMedCentral
    31.Zhang C, Aung A, Liao L, Varghese S. A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter. 2009;5(20):3831–4.CrossRef
    32.Phadke A, Zhang C, Hwang Y, Vecchio K, Varghese S. Templated mineralization of synthetic hydrogels for bone-like composite materials: Role of matrix hydrophobicity. Biomacromolecules. 2010;11(8):2060–8.CrossRef PubMed
    33.Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T. Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A. 2003;65(2):188–95.CrossRef PubMed
    34.Chang C-W, Hwang Y, Brafman D, Hagan T, Phung C, Varghese S. Engineering cell–material interfaces for long-term expansion of human pluripotent stem cells. Biomaterials. 2013;34(4):912–21.CrossRef PubMed PubMedCentral
    35.Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.CrossRef PubMed
    36.Phadke A, Hwang Y, Hee Kim S, Hyun Kim S, Yamaguchi T, Masuda K, et al. Effect of scaffold microarchitecture on osteogenic differentiation of human mesenchymal stem cells. Eur Cell Mater. 2013;25:114–29.PubMed PubMedCentral
    37.Shih Y-R, Phadke A, Yamaguchi T, Kang H, Inoue N, Masuda K, et al. Synthetic bone mimetic matrix-mediated in situ bone tissue formation through host cell recruitment. Acta Biomater. 2015;19:1–9.CrossRef PubMed
    38.Kang H, Shih Y-RV, Varghese S. Biomineralized matrices dominate soluble cues to direct osteogenic differentiation of human mesenchymal stem cells through adenosine signaling. Biomacromolecules. 2015;16(3):1050–61.CrossRef PubMed
    39.Barradas A, Yuan H, Blitterswijk CA, Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater. 2011;21:407–29.PubMed
    40.Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AM, de Ruiter A, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci. 2010;107(31):13614–9.CrossRef PubMed PubMedCentral
    41.Yang H, Zeng H, Hao L, Zhao N, Du C, Liao H, et al. Effects of hydroxyapatite microparticles morphology on bone mesenchymal stem cell behavior. J Mater Chem B. 2014;2:4703–10.CrossRef
    42.Choi S, Murphy WL. A screening approach reveals the influence of mineral coating morphology on human mesenchymal stem cell differentiation. Biotechnol J. 2013;8:496–501.CrossRef PubMed
    43.Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, et al. L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2012;424:439–45.CrossRef PubMed
    44.Barradas A, Fernandes HA, Groen N, Chai YC, Schrooten J, van de Peppel J, et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials. 2012;33(11):3205–15.CrossRef PubMed
    45.Shih Y-RV, Hwang Y, Phadke A, Kang H, Hwang NS, Caro EJ, et al. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling. Proc Natl Acad Sci. 2014;111(3):990–5.CrossRef PubMed PubMedCentral
    46.Suarez-Gonzalez D, Barnhart K, Migneco F, Flanagan C, Hollister SJ, Murphy WL. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials. 2012;33(2):713–21.CrossRef PubMed PubMedCentral
    47.Suárez-González D, Lee JS, Lan Levengood SK, Vanderby Jr R, Murphy WL. Mineral coatings modulate β-TCP stability and enable growth factor binding and release. Acta Biomater. 2012;8(3):1117–24.CrossRef PubMed PubMedCentral
    48.Liu Y, Hunziker EB, Layrolle P, De Bruijn JD, De Groot K. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng. 2004;10(1-2):101–8.CrossRef PubMed
    49.Yuan H, Zou P, Yang Z, Zhang X, De Bruijn J, De Groot K. Bone morphogenetic protein and ceramic-induced osteogenesis. J Mater Sci Mater Med. 1998;9(12):717–21.CrossRef PubMed
    50.Murphy W, Simmons C, Kaigler D, Mooney D. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res. 2004;83(3):204–10.CrossRef PubMed
    51.Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res : Off J Am Soc Bone Miner Res. 2006;21(5):735–44.CrossRef
    52.Xiao X, Wang W, Liu D, Zhang H, Gao P, Geng L, et al. The promotion of angiogenesis induced by three-dimensional porous beta-tricalcium phosphate scaffold with different interconnection sizes via activation of PI3K/Akt pathways. Sci Rep. 2015;5:9409.CrossRef PubMed PubMedCentral
  • 作者单位:Cai Wen (1)
    Heemin Kang (2)
    Yu-Ru V. Shih (2)
    YongSung Hwang (2)
    Shyni Varghese (2)

    1. School of Chemistry and Chemical Engineering, Southeast University, Sipailou 2#, Nanjing, Jiangsu Province, 210096, People’s Republic of China
    2. Department of Bioengineering, University of California— San Diego, 9500, Gilman Drive, La Jolla, CA, 92093-0412, USA
  • 刊物主题:Pharmaceutical Sciences/Technology;
  • 出版者:Springer US
  • ISSN:2190-3948
文摘
Human pluripotent stem cells such as embryonic stem cells (hESCs) and multipotent stem cells like mesenchymal stem cells (hMSCs) hold great promise as potential cell sources for bone tissue regeneration. Comparing the in vivo osteogenesis of hESCs and hMSCs by biomaterial-based cues provides insight into the differentiation kinetics of these cells as well as their potential to contribute to bone tissue repair in vivo. Here, we compared in vivo osteogenic differentiation of hESCs and hMSCs within osteoinductive calcium phosphate (CaP)-bearing biomineralized scaffolds that recapitulate a bone-specific mineral microenvironment. Both hESCs and hMSCs underwent osteogenic differentiation responding to the biomaterial-based instructive cues. Furthermore, hMSCs underwent earlier in vivo osteogenesis compared to hESCs, but both stem cell types acquired a similar osteogenic maturation by 8 weeks of implantation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700