Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling
详细信息    查看全文
  • 作者:Shouguo Gao (1) (2)
    John L Hartman IV (3)
    Justin L Carter (1)
    Martin J Hessner (4) (5)
    Xujing Wang (1) (2)
  • 刊名:BMC Systems Biology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:4
  • 期:1
  • 全文大小:2871KB
  • 参考文献:1. Bar-Joseph Z: Analyzing time series gene expression data. / Bioinformatics 2004, 20: 2493鈥?503. CrossRef
    2. Zhu D, Hero AO, Qin ZS, Swaroop A: High throughput screening of co-expressed gene pairs with controlled false discovery rate (FDR) and minimum acceptable strength (MAS). / J Comput Biol 2005, 12: 1029鈥?045. CrossRef
    3. Zhu D, Hero AO, Cheng H, Khanna R, Swaroop A: Network constrained clustering for gene microarray data. / Bioinformatics 2005, 21: 4014鈥?020. CrossRef
    4. Schafer J, Strimmer K: An empirical Bayes approach to inferring large-scale gene association networks. / Bioinformatics 2005, 21: 754鈥?64. CrossRef
    5. Burton P, Gurrin L, Sly P, (Eds): Extending the simple linear regression model to account for correlated responses: an introduction to generalized estimating equations and multi-level mixed modelling. / England 1998.
    6. Butte AJ, Bao L, Reis BY, Watkins TW, Kohane IS: Comparing the similarity of time-series gene expression using signal processing metrics. / J Biomed Inform 2001, 34: 396鈥?05. jbin.2002.1037">CrossRef
    7. Qian J, Dolled-Filhart M, Lin J, Yu H, Gerstein M: Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. / J Mol Biol 2001, 314: 1053鈥?066. jmbi.2000.5219">CrossRef
    8. Schmitt WA, Raab RM, Stephanopoulos G: Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. / Genome Res 2004, 14: 1654鈥?663. CrossRef
    9. Balasubramaniyan R, Hullermeier E, Weskamp N, Kamper J: Clustering of gene expression data using a local shape-based similarity measure. / Bioinformatics 2005, 21: 1069鈥?077. CrossRef
    10. Pereda E, Quiroga RQ, Bhattacharya J: Nonlinear multivariate analysis of neurophysiological signals. / Prog Neurobiol 2005, 77: 1鈥?7. j.pneurobio.2005.10.003">CrossRef
    11. Aach J, Church GM: Aligning gene expression time series with time warping algorithms. / Bioinformatics 2001, 17: 495鈥?08. CrossRef
    12. Liu X, Muller HG: Modes and clustering for time-warped gene expression profile data. / Bioinformatics 2003, 19: 1937鈥?944. CrossRef
    13. Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I: Continuous representations of time-series gene expression data. / J Comput Biol 2003, 10: 341鈥?56. CrossRef
    14. Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS: Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. / Proc Natl Acad Sci USA 2003, 100: 10146鈥?0151. CrossRef
    15. Yoneya T, Mamitsuka H: A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors. / Bioinformatics 2007, 23: 842鈥?49. CrossRef
    16. Mukhopadhyay ND, Chatterjee S: Causality and pathway search in microarray time series experiment. / Bioinformatics 2007, 23: 442鈥?49. CrossRef
    17. Liang S, Fuhrman S, Somogyi R: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. / Pac Symp Biocomput 1998, 18鈥?9.
    18. Zhao Y, Billings SA: Neighborhood detection using mutual information for the identification of cellular automata. / IEEE Trans Syst Man Cybern B Cybern 2006, 36: 473鈥?79. CrossRef
    19. Salvador R, Suckling J, Schwarzbauer C, Bullmore E: Undirected graphs of frequency-dependent functional connectivity in whole brain networks. / Philos Trans R Soc Lond B Biol Sci 2005, 360: 937鈥?46. CrossRef
    20. Albo Z, Di Prisco GV, Chen Y, Rangarajan G, Truccolo W, Feng J, Vertes RP, Ding M: Is partial coherence a viable technique for identifying generators of neural oscillations? / Biol Cybern 2004, 90: 318鈥?26. CrossRef
    21. Longo D, Hasty J: Dynamics of single-cell gene expression. / Mol Syst Biol 2006, 2: 64. CrossRef
    22. Klevecz RR, Bolen J, Forrest G, Murray DB: A genomewide oscillation in transcription gates DNA replication and cell cycle. / Proc Natl Acad Sci USA 2004, 101: 1200鈥?205. CrossRef
    23. Cai L, Dalal CK, Elowitz MB: Frequency-modulated nuclear localization bursts coordinate gene regulation. / Nature 2008, 455: 485鈥?90. CrossRef
    24. Proctor CJ, Gray DA: Explaining oscillations and variability in the p53-Mdm2 system. / BMC Syst Biol 2008, 2: 75. CrossRef
    25. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U: Oscillations and variability in the p53 system. / Mol Syst Biol 2006., 2: 2006 0033
    26. Yang YL, Suen J, Brynildsen MP, Galbraith SJ, Liao JC: Inferring yeast cell cycle regulators and interactions using transcription factor activities. / BMC Genomics 2005, 6: 90. CrossRef
    27. Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, / et al.: Oscillations in NF-kappaB signaling control the dynamics of gene expression. / Science 2004, 306: 704鈥?08. CrossRef
    28. Buzs芒aki G: / Rhythms of the brain. Oxford; New York: Oxford University Press; 2006. CrossRef
    29. Izhikevich EM: / Dynamical systems in neuroscience: the geometry of excitability and bursting. The MIT Press; 2006.
    30. Strogatz SH: / Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Reading, Mass.: Perseus Books; 1994.
    31. Rosenblum M, Pikovsky A, Kurths J, Schafer C, Tass PA: Phase syncrhonization: from theory to data analysis. In / Handbook of Biological Physics. / Volume 4. Edited by: Moss F, Gielen S. Amsterdam: Elsevier Science; 2001:279鈥?21. Hoff AJ (Series Editor) [Neuro-informatics and / Neural Modeling]
    32. Kim CS, Bae CS, Tcha HJ: A phase synchronization clustering algorithm for identifying interesting groups of genes from cell cycle expression data. / BMC Bioinformatics 2008, 9: 56. CrossRef
    33. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. / Mol Biol Cell 1998, 9: 3273鈥?297.
    34. Cho RJ, Campbell MJ, Winzeler EA, Steinmetz L, Conway A, Wodicka L, Wolfsberg TG, Gabrielian AE, Landsman D, Lockhart DJ, Davis RW: A genome-wide transcriptional analysis of the mitotic cell cycle. / Mol Cell 1998, 2: 65鈥?3. CrossRef
    35. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, / et al.: Transcriptional regulatory networks in Saccharomyces cerevisiae. / Science 2002, 298: 799鈥?04. CrossRef
    36. Simon I, Barnett J, Hannett N, Harbison CT, Rinaldi NJ, Volkert TL, Wyrick JJ, Zeitlinger J, Gifford DK, Jaakkola TS, Young RA: Serial regulation of transcriptional regulators in the yeast cell cycle. / Cell 2001, 106: 697鈥?08. CrossRef
    37. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bahler J, Wood V, / et al.: The BioGRID Interaction Database: 2008 update. / Nucleic Acids Res 2008, 36: D637鈥?40. CrossRef
    38. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID: a general repository for interaction datasets. / Nucleic Acids Res 2006, 34: D535鈥?39. j109">CrossRef
    39. Efron B, Tibshirani R: / An introduction to the bootstrap. New York: Chapman & Hall; 1993.
    40. Alon U: Network motifs: theory and experimental approaches. / Nat Rev Genet 2007, 8: 450鈥?61. CrossRef
    41. Gao F, Foat BC, Bussemaker HJ, (Eds): Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. / England 2004.
    42. Bobola N, Jansen RP, Shin TH, Nasmyth K: Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. / Cell 1996, 84: 699鈥?09. CrossRef
    43. Jeong H, Mason SP, Barabasi AL, Oltvai ZN: Lethality and centrality in protein networks. / Nature 2001, 411: 41鈥?2. CrossRef
    44. Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. / Stat Appl Genet Mol Biol 2005, 4: Article17.
    45. Beissbarth T, Speed TP: GOstat: find statistically overrepresented Gene Ontologies within a group of genes. / Bioinformatics 2004, 20: 1464鈥?465. CrossRef
    46. Tiana G, Krishna S, Pigolotti S, Jensen MH, Sneppen K: Oscillations and temporal signalling in cells. / Phys Biol 2007, 4: R1鈥?7. CrossRef
    47. Kim JR, Shin D, Jung SH, Heslop-Harrison P, Cho KH: A design principle underlying the synchronization of oscillations in cellular systems. / J Cell Sci 123: 537鈥?43.
    48. Schafer C, Rosenblum MG, Kurths J, Abel HH: Heartbeat synchronized with ventilation. / Nature 1998, 392: 239鈥?40. CrossRef
    49. Musizza B, Stefanovska A, McClintock PV, Palus M, Petrovcic J, Ribaric S, Bajrovic FF: Interactions between cardiac, respiratory and EEG-delta oscillations in rats during anaesthesia. / J Physiol 2007, 580: 315鈥?26. jphysiol.2006.126748">CrossRef
    50. Stefanovska A, Haken H, McClintock PVE, Ho啪i膷 M, Bajrovi膰 F, Ribari膷 S: Reversible Transitions between Synchronization States of the Cardiorespiratory System. / Phys Rev Lett 2000, 85: 4831. CrossRef
    51. Wang X, Ghosh S, Guo S-W: Quantitative quality control in microarray image processing and data acquisition. / Nucleic Acids Research 2001, 29: E75鈥?2. CrossRef
    52. Wang X, Hessner MJ, Wu Y, Pati N, Ghosh S: Quantitative quality control in microarray experiments and the application in data filtering, normalization and false positive rate prediction. / Bioinformatics 2003, 19: 1341鈥?347. CrossRef
    53. Wang X, Jia S, Meyer L, Xiang B, Jiang N, Chen M, Moreno-Quinn C, Jacob HJ, Ghosh S, Hessner MJ: Accurate gene expression measurements by cDNA microarrays utilizing TDAV. / BMC Bioinformatics 2006, 7: 378. CrossRef
    54. Wang Y, Wang X, Guo SW, Ghosh S: Conditions to ensure competitive hybridization in two-color microarray: a theoretical and experimental analysis. / Biotechniques 2002, 32: 1342鈥?346.
    55. Rosenblum MG, Pikovsky AS, Kurths J, Osipov GV, Kiss IZ, Hudson JL: Locking-based frequency measurement and synchronization of chaotic oscillators with complex dynamics. / Phys Rev Lett 2002, 89: 264102. CrossRef
    56. Gabor D: Theory of communication. / J IEE (London) 1946, 93: 429鈥?57.
    57. Arfken GB, Weber H-J: / Mathematical methods for physicists. 5th edition. San Diego: Harcourt/Academic Press; 2001.
    58. Schafer C, Rosenblum MG, Abel HH, Kurths J: Synchronization in the human cardiorespiratory system. / Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 1999, 60: 857鈥?70.
    59. Hasty J, Isaacs F, Dolnik M, McMillen D, Collins JJ: Designer gene networks: Towards fundamental cellular control. / Chaos 2001, 11: 207鈥?20. CrossRef
    60. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. / Science 2002, 297: 1551鈥?555. CrossRef
  • 作者单位:Shouguo Gao (1) (2)
    John L Hartman IV (3)
    Justin L Carter (1)
    Martin J Hessner (4) (5)
    Xujing Wang (1) (2)

    1. Department of Physics, The University of Alabama at Birmingham, 35294, Birmingham, Alabama, USA
    2. The Comprehensive Diabetes Center, The University of Alabama at Birmingham, 35294, Birmingham, Alabama, USA
    3. Department of Genetics, The University of Alabama at Birmingham, 35294, Birmingham, Alabama, USA
    4. Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, The Max McGee National Research Center for Juvenile Diabetes, 8701 Watertown Plank Road, 53226, Milwaukee, Wisconsin, USA
    5. The Human and Molecular Genetics Center, The Medical College of Wisconsin, 8701 Watertown Plank Road, 53226, Milwaukee, Wisconsin, USA
文摘
Background In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation. Results In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation. Conclusions Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700