Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium
详细信息    查看全文
  • 作者:Michael Schlicht (1) (2)
    Brian Matysiak (1)
    Tracy Brodzeller (1)
    Xinyu Wen (1) (3)
    Hang Liu (1) (3)
    Guohui Zhou (1) (2)
    Rajiv Dhir (4)
    Martin J Hessner (5) (6)
    Peter Tonellato (3) (6)
    Mark Suckow (7)
    Morris Pollard (7)
    Milton W Datta (1) (2)
  • 刊名:BMC Genomics
  • 出版年:2004
  • 出版时间:December 2004
  • 年:2004
  • 卷:5
  • 期:1
  • 全文大小:4087KB
  • 参考文献:1. Demir E, Babur O, Dogrusoz U, Gursoy A, Nisanci G, Cetin-Atalay R, Ozturk M:PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. / Bioinformatics2002,18(7):996鈥?003. CrossRef
    2. Draghici S, Khatri P, Shah A, Tainsky MA:Assessing the functional bias of commercial microarrays using the onto鈥?compare database. / Biotechniques2003,Suppl:55鈥?1.
    3. Krull M, Voss N, Choi C, Pistor S, Potapov A, Wingender E:TRANSPATH: an integrated database on signal transduction and a tool for array analysis. / Nucleic Acids Res2003,31(1):97鈥?00. CrossRef
    4. Tanabe L, Scherf U, Smith LH, Lee JK, Hunter L, Weinstein JN:MedMiner: an Internet text-mining tool for biomedical information, with application to gene expression profiling. / Biotechniques1999,27:1210鈥?217.
    5. Rindflesch TC, Tanabe L, Weinstein JN, Hunter L:EDGAR: extraction of drugs, genes and relations from the biomedical literature. / Pac Symp Biocomput2000, 517鈥?28.
    6. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C:SELECT: the Selenium and Vitamin E Cancer Prevention Trial: rationale and design. / Prostate Cancer Prostatic Dis2000,3(3):145鈥?51. j.pcan.4500412">CrossRef
    7. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C:SELECT: the next prostate cancer prevention trial. Selenum and Vitamin E Cancer Prevention Trial. / J Urol2001,166(4):1311鈥?315. CrossRef
    8. Gavin AJ, Scheetz TE, Roberts CA, O'Leary B, Braun TA, Sheffield VC, Soares MB, Robinson JP, Casavant TL:Pooled library tissue tags for EST-based gene discovery. / Bioinformatics2002,18(9):1162鈥?166. CrossRef
    9. Hessner MJ, Wang X, Hulse K, Meyer L, Wu Y, Nye S, Guo SW, Ghosh S:Three color cDNA microarrays: quantitative assessment through the use of fluorescein-labeled probes. / Nucleic Acids Res2003,31(4):e14. CrossRef
    10. Hessner MJ, Wang X, Khan S, Meyer L, Schlicht M, Tackes J, Datta MW, Jacob HJ, Ghosh S:Use of a three-color cDNA microarray platform to measure and control support-bound probe for improved data quality and reproducibility. / Nucleic Acids Res2003,31(11):e60. CrossRef
    11. Homologene [http://www.ncbi.nlm.nih.gov/HomoloGene/]
    12. Dudoit S, Gentleman RC, Quackenbush J:Open source software for the analysis of microarray data. / Biotechniques2003,Suppl:45鈥?1.
    13. Herrero J, Dopazo J:Combining hierarchical clustering and self-organizing maps for exploratory analysis of gene expression patterns. / J Proteome Res2002,1(5):467鈥?70. CrossRef
    14. Pan W:A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. / Bioinformatics2002,18(4):546鈥?54. CrossRef
    15. NCI Cancer Genome Anatomy Project [http://cgap.nci.nih.gov/Tissues/LibraryFinder]
    16. Suzuki K, Koike H, Matsui H, Ono Y, Hasumi M, Nakazato H, Okugi H, Sekine Y, Oki K, Ito K, / et al.:Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC鈥?. / Int J Cancer2002,99(6):846鈥?52. jc.10428">CrossRef
    17. Pollard M, Luckert PH:Influence of isoflavones in soy protein isolates on development of induced prostate-related cancers in L-W rats. / Nutr Cancer1997,28(1):41鈥?5. CrossRef
    18. Pollard M, Wolter W, Sun L:Prevention of induced prostate-related cancer by soy protein isolate/isoflavone-supplemented diet in Lobund-Wistar rats. / In Vivo2000,14(3):389鈥?92.
    19. Pollard M, Wolter W:Prevention of spontaneous prostate-related cancer in Lobund-Wistar rats by a soy protein isolate/isoflavone diet. / Prostate2000,45(2):101鈥?05. CrossRef
    20. Pollard M, Wolter W, Sun L:Diet and the duration of testosterone-dependent prostate cancer in Lobund-Wistar rats. / Cancer Lett2001,173(2):127鈥?31. CrossRef
    21. Pollard M, Luckert PH:Promotional effects of testosterone and high fat diet on the development of autochthonous prostate cancer in rats. / Cancer Lett1986,32(2):223鈥?27. CrossRef
    22. Pollard M, Luckert PH:Promotional effects of testosterone and dietary fat on prostate carcinogenesis in genetically susceptible rats. / Prostate1985,6(1):1鈥?. CrossRef
    23. Chang CF, Pollard M:In vitro propagation of prostate adenocarcinoma cells from rats. / Invest Urol1977,14(5):331鈥?34.
    24. Liu AY, Abraham BA:Subtractive cloning of a hybrid human endogenous retrovirus and calbindin gene in the prostate cell line PC3. / Cancer Res1991,51(15):4107鈥?110.
    25. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C:SELECT: the Selenium and Vitamin E Cancer Prevention Trial: rationale and design. / Prostate Cancer Prostatic Dis2000,3(3):145鈥?51. j.pcan.4500412">CrossRef
    26. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C:SELECT: the next prostate cancer prevention trial. Selenum and Vitamin E Cancer Prevention Trial. / J Urol2001,166(4):1311鈥?315. CrossRef
    27. Ip C, Birringer M, Block E, Kotrebai M, Tyson JF, Uden PC, Lisk DJ:Chemical speciation influences comparative activity of selenium-enriched garlic and yeast in mammary cancer prevention. / J Agric Food Chem2000,48(6):2062鈥?070. jf000051f">CrossRef
    28. Bhamre S, Whitin JC, Cohen HJ:Selenomethionine does not affect PSA secretion independent of its effect on LNCaP cell growth. / Prostate2003,54(4):315鈥?21. CrossRef
    29. Menter DG, Sabichi AL, Lippman SM:Selenium effects on prostate cell growth. / Cancer Epidemiol Biomarkers Prev2000,9(11):1171鈥?182.
    30. Lee KW, Cohen P:Nuclear effects: unexpected intracellular actions of insulin-like growth factor binding protein鈥?. / J Endocrinol2002,175(1):33鈥?0. joe.0.1750033">CrossRef
    31. Lucia MS, Bostwick DG, Bosland M, Cockett AT, Knapp DW, Leav I, Pollard M, Rinker-Schaeffer C, Shirai T, Watkins BA:Workgroup I: rodent models of prostate cancer. / Prostate1998,36(1):49鈥?5. CrossRef
    32. Pollard M, Luckert PH:Chemotherapy of metastatic prostate adenocarcinomas in germfree rats. I. Effects of cyclophosphamide (NSC鈥?6271). / Cancer Treat Rep1976,60(5):619鈥?21.
    33. Pollard M, Luckert PH:In vivo model systems for assessing an anti-cancer drug: responses of autochthonous and transplanted prostate tumors to cyclophosphamide. / Anticancer Res1990,10(1):33鈥?6.
    34. Moody D, Zou Z, McIntyre L:Cross-species hybridisation of pig RNA to human nylon microarrays. / BMC Genomics2002,3(1):27. CrossRef
    35. Cohen BA, Pilpel Y, Mitra RD, Church GM:Discrimination between paralogs using microarray analysis: application to the Yap1p and Yap2p transcriptional networks. / Mol Biol Cell2002,13(5):1608鈥?614. CrossRef
    36. Schoolnik GK:Functional and comparative genomics of pathogenic bacteria. / Curr Opin Microbiol2002,5(1):20鈥?6. CrossRef
    37. Ramarathnam R, Subramaniam S:A novel microarray strategy for detecting genes and pathways in microbes with unsequenced genomes. / Microb Comp Genomics2000,5(3):153鈥?61.
    38. Adamo ML, Shao ZM, Lanau F, Chen JC, Clemmons DR, Roberts CT Jr, LeRoith D, Fontana JA:Insulin-like growth factor-I (IGF-I) and retinoic acid modulation of IGF-binding proteins (IGFBPs): IGFBP鈥?, 鈥?, and 鈥? gene expression and protein secretion in a breast cancer cell line. / Endocrinology1992,131(4):1858鈥?866. CrossRef
    39. Baxter RC:Signalling pathways involved in antiproliferative effects of IGFBP鈥?: a review. / Mol Pathol2001,54(3):145鈥?48. CrossRef
    40. Liu B, Lee HY, Weinzimer SA, Powell DR, Clifford JL, Kurie JM, Cohen P:Direct functional interactions between insulin-like growth factor-binding protein鈥? and retinoid X receptor-alpha regulate transcriptional signaling and apoptosis. / J Biol Chem2000,275(43):33607鈥?3613. jbc.M002547200">CrossRef
    41. Menter DG, Sabichi AL, Lippman SM:Selenium effects on prostate cell growth. / Cancer Epidemiol Biomarkers Prev2000,9(11):1171鈥?182.
    42. Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C:Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. / Cancer Res2003,63(1):52鈥?9.
    43. Stanford Microarray Facility Brown laboratory [http://cmgm.stanford.edu/pbrown/mguide/index.html]
    44. TIGR Software [http://www.tigr.org/software/tm4/]
    45. Quackenbush J:Microarray data normalization and transformation. / Nat Genet2002,32(Suppl):496鈥?01. CrossRef
    46. Bioinformatics Program [http://brc.mcw.edu]
    47. Kukoski R, Blonigen B, Macri E, Renshaw AA, Hoffman M, Loda M, Datta MW:p27 and cyclin E/D2 associations in testicular germ cell tumors: implications for tumorigenesis. / Appl Immunohistochem Mol Morphol2003,11(2):138鈥?43.
    48. Datta MW, Renshaw AA, Dutta A, Hoffman MA, Loughlin KR:Evaluation of cyclin expression in testicular germ cell tumors: cyclin E correlates with tumor type, advanced clinical stage, and pulmonary metastasis. / Mod Pathol2000,13(6):667鈥?72. CrossRef
    49. Datta MW, Macri E, Signoretti S, Renshaw AA, Loda M:Transition from in situ to invasive testicular germ cell neoplasia is associated with the loss of p21 and gain of mdm鈥? expression. / Mod Pathol2001,14(5):437鈥?42. CrossRef
    50. Boulogne B, Levacher C, Durand P, Habert R:Retinoic acid receptors and retinoid X receptors in the rat testis during fetal and postnatal development: immunolocalization and implication in the control of the number of gonocytes. / Biol Reprod1999,61(6):1548鈥?557. CrossRef
    51. Katsetos CD, Stadnicka I, Boyd JC, Ehya H, Zheng S, Soprano CM, Cooper HS, Patchefsky AS, Soprano DR, Soprano KJ:Cellular distribution of retinoic acid receptor-alpha protein in serous adenocarcinomas of ovarian, tubal, and peritoneal origin: comparison with estrogen receptor status. / Am J Pathol1998,153(2):469鈥?80.
  • 作者单位:Michael Schlicht (1) (2)
    Brian Matysiak (1)
    Tracy Brodzeller (1)
    Xinyu Wen (1) (3)
    Hang Liu (1) (3)
    Guohui Zhou (1) (2)
    Rajiv Dhir (4)
    Martin J Hessner (5) (6)
    Peter Tonellato (3) (6)
    Mark Suckow (7)
    Morris Pollard (7)
    Milton W Datta (1) (2)

    1. Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226, Milwaukee, WI, USA
    2. Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, 1365-B Clifton Road NE, 30322, Atlanta, GA, USA
    3. Bioinformatics Program and Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226, Milwaukee, WI, USA
    4. Department of Pathology, University of Pittsburgh Medical Center, 200 Lothrop Street, 15242, Pittsburgh, PA, USA
    5. Department of Pediatrics and Human and Molecular Genetics Center, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226, Milwaukee, WI, USA
    6. Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, 53226, Milwaukee, WI, USA
    7. Walther Cancer Center, Lobund Laboratories, Notre Dame University, 400 Freiman Life Science Center, 46556, Notre Dame, IN, USA
文摘
Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using tissue microarrays to demonstrate a significant association between downregulated protein expression and tumorigenesis, a process that is the reverse of what is seen in the presence of Selenium. Conclusions Thus the outlined process demonstrates similar baseline and selenium induced gene expression profiles between rat and human prostate cancers, and provides a method for identifying testable functional pathways for the action of Selenium's chemopreventive properties in prostate cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700