Interactive effects of salinity, flooding, and soil type on Panicum hemitomon
详细信息    查看全文
  • 作者:Jonathan M. Willis (1) (2) (3)
    Mark W. Hester (2)
  • 关键词:Louisiana ; Panicum hemitomon ; marsh loss ; sea ; level rise ; salinity ; flooding ; organic soil
  • 刊名:Wetlands
  • 出版年:2004
  • 出版时间:March 2004
  • 年:2004
  • 卷:24
  • 期:1
  • 页码:43-50
  • 全文大小:116KB
  • 参考文献:1. Barbour, M. G., J. H. Burk, W. D. Pitts, F. S. Gilliam, and M. W. Schwartz. 1999. Terrestrial Plant Ecology, third edition. Benjamin Cummings. Menlo Park, CA, USA.
    2. Charbeck, R. H. 1972. Vegetation, water, and soil characteristics of the Louisiana coastal region. Louisiana State University Agricultural Experiment Station. Baton Rouge, LA, USA. Bulletin No. 664.
    3. Coleman, J. M., H. H. Roberts, and G. W. Stone. 1998. Mississippi River Delta: an overview. Journal of Coastal Research 14:698鈥?16.
    4. David, P. G. 1999. Response of exotics to restored hydroperiod at Dupuis Reserve, Florida. Restoration Ecology 7:407鈥?10. CrossRef
    5. Day, J. W. Jr., D. Pont, P. F. Hensel, and C. Ibanez. 1995. Impacts of sea-level rise on deltas in the Gulf of Mexico and the Mediterranean: The importance of pulsing events to sustainability. Estuaries 18:636鈥?47. CrossRef
    6. DeLaune, R. D., W. H. Patrick Jr., and J. M. Brannon. 1976. Nutrient transformations in Louisiana salt marsh soils. Center for Wetland Resources, Louisiana State University. Baton Rouge, LA, USA. Sea Grant Publication No. LSU-T-76-009.
    7. Delaune, R. D., C. J. Smith, and M. N. Sarafan. 1986. Nitrogen cycling in a freshwater marsh of / Panicum hemitomon on the deltaic plain of the Mississippi River. Journal of Ecology 74:249鈥?56. CrossRef
    8. Dowty, R. A. 1998. Wetland restoration: the bioremediation of small-scale oil spills in fresh marsh environments and investigations of adventitious rooting in wetland vegetation. M.S. Thesis. Southeastern Louisiana University, Hammond, LA, USA.
    9. Faulkner, S. P., W. H. Patrick Jr., and R. P. Gambrell. 1989. Field techniques for measuring wetland soil parameters. Soil Science Society of America Journal 53:883鈥?90.
    10. Girden, E. R. 1992. ANOVA Repeated Measures. Sage Publications, Newbury Park, CA, USA.
    11. Gough, L. and J. B. Grace. 1998. Effects of flooding, salinity, and herbivory on coastal plant communities, Louisiana, United States. Oecologia 117:527鈥?35. CrossRef
    12. Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 11:1169鈥?194.
    13. Hester, M. W., I. A. Mendelssohn, and K. L. McKee. 1998. Intraspecific variation in salt tolerance and morphology in / Panicum hemitomon and / Spartina alterniflora. International Journal of Plant Sciences 159:127鈥?38. CrossRef
    14. Hester, M. W., I. A. Mendelssohn, and K. L. McKee. 2001. Species and population variation in salt tolerance in / Panicum hemitomon, Spartina patens, and / Spartina alterniflora: morphological and physiological constraints. Environmental and Experimental Botany 46:277鈥?97. CrossRef
    15. Howard, R. J. and I. A. Mendelssohn. 1999. Salinity as a constraint on growth of oligohaline marsh macrophytes. I. Species variation in stress tolerance. American Journal of Botany 86:785鈥?94. CrossRef
    16. Koch, M. S. and I. A. Mendelssohn. 1989. Sulphide as a soil phytotoxin: differential response in two marsh species. Journal of Ecology 77:565鈥?78. CrossRef
    17. Koch, M. S., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35:399鈥?08.
    18. La Peyre, M. K. G., J. B. Grace, E. Hahn, and I. A. Mendelssohn. 2001. The importance of competition in regulating plant species abundance along a salinity gradient. Ecology 82:62鈥?9. CrossRef
    19. Lessmann, J. M., I. A. Mendelssohn, M. W. Hester, and K. L. McKee. 1997. Population variation in growth response to flooding of three marsh grasses. Ecological Engineering 8:31鈥?7. CrossRef
    20. Mendelssohn, I. A., K. L. McKee, and W. H. Patrick Jr. 1981. Oxygen deficiency in / Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214:439鈥?41. CrossRef
    21. McKee, K. L. and I. A. Mendelssohn. 1989. Response of a fresh-water marsh plant community to increased salinity and increased water level. Aquatic Botany 34:301鈥?16. CrossRef
    22. Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands. Third edition. Van Nostrand Reinhold, New York, NY, USA.
    23. Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Australian Journal of Plant Physiology 13:143鈥?60. CrossRef
    24. Munns, R. 1993. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell, and Environment 16:15鈥?4. CrossRef
    25. Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied Linear Statistical Models, third edition. Irwin, Boston, MA, USA.
    26. Nuttle, W. K., M. M. Brinson, D. Cahoon, J. C. Callaway, R. R. Christian, G. L. Chmura, W. H. Conner, R. H. Day, M. Ford, J. Grace, J. C. Lynch, R. A. Orson, R. W. Parkinson, D. Reed, J. M. Rybezyk, T. J. Smith III, R. P. Stumpf, and K. Williams. 1997. Conserving coastal wetlands despite sea level rise. EOS Transactions of the American Geophysical Union 78:257鈥?58.
    27. O鈥橬eil, T. 1949. The Muskrat in Louisiana Coastal Marshes. Louisiana Wildlife and Fisheries Commission, New Orleans, LA, USA.
    28. Pahl, J. 2002. The combined effects of salinity and sulfide on the growth and physiology of the freshwater marsh plant / Panicum hemitomon J.A. Schultes. Ph.D. Dissertation. Louisiana State University, Baton Rouge, LA, USA.
    29. Patrick, W. H., Jr. and R. A. Khalid. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186:53鈥?5. CrossRef
    30. Penfound, W. T. and E. S. Hathaway. 1938. Plant communities in the marshlands of southeastern Louisiana. Ecological Monographs 8:1鈥?6. CrossRef
    31. Penland, S. and K. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico. Journal of Coastal Research 6:323鈥?42.
    32. Pezeshki, S. R., R. D. DeLaune, and W. H. Patrick, Jr. 1987. Response of the freshwater marsh species, / Panicum hemitomon Schult., to increased salinity. Freshwater Biology 17:195鈥?00. CrossRef
    33. Pezeshki, S. R., R. D. DeLaune, and S. Z. Pan. 1991. Relationship of soil hydrogen sulfide level to net carbon assimilation of / Panicum hemitomon and / Spartina patens. Vegetatio 95:159鈥?66.
    34. Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advances in Agronomy 24:29鈥?8. CrossRef
    35. Sasser, C. E., J. G. Gosselink, E. M. Swenson, C. M. Swarzenski, and N. C. Leibowitz. 1996. Vegetation, substrate and hydrology in floating marshes in the Mississippi River delta plain wetlands, USA. Vegetatio 122:129鈥?42. CrossRef
    36. SPSS, Inc. 2000. SYSTAT 8.0 user manual SPSS, Inc. Chicago, IL, USA.
    37. Stumpf, R. P. and J. W. Haines. 1998. Variations in tidal level in the Gulf of Mexico and implications for tidal wetlands. Estuarine, Coastal, and Shelf Science 46:165鈥?73. CrossRef
    38. Visser, J. M., C. E. Sasser, R. H. Chabreck, and R. G. Linscombe. 1999. Long-term vegetation change in Louisiana tidal marshes, 1968鈥?992. Wetlands 19:168鈥?75. CrossRef
    39. Webb, E. C. and I. A. Mendelssohn. 1996. Factors affecting vegetation dieback of an oligohaline marsh in coastal Louisiana: field manipulation of salinity and submergence. American Journal of Botany 83:1429鈥?434. CrossRef
  • 作者单位:Jonathan M. Willis (1) (2) (3)
    Mark W. Hester (2)

    1. Department of Biological Sciences, Southeastern Louisiana University, 70402, Hammond, Louisiana, USA
    2. Department of Biological Sciences, Coastal Plant Sciences Laboratory, 70148, New Orleans, Louisiana, USA
    3. Pontchartrain Institute for Environmental Science, University of New Orleans, 70148, New Orleans, Louisiana, USA
  • ISSN:1943-6246
文摘
It is well documented that Louisiana is experiencing wetland loss at rates greater than any other locale in the world. High rates of relative sea-level rise, a combination of eustatic sea-level rise and subsidence, is anticipated to compound this problem further in the future through increased flooding and encroachment of saline water into freshwater wetlands. The research presented in this paper examines the interactive effect of increased salinity level, flooding depth, and soil type on the growth responses of a dominant Louisiana fresh-water marsh plant, Panicum hemitomon, whose prevalence in Louisiana is currently in decline. This study was conducted under greenhouse conditions and employed a factorial design consisting of three salinity levels (0, 1.5, 3.0 ppt), three hydrologic regimes (0, 10, 20 cm), and two soil types (high organic content, low organic content). Panicum hemitomon productivity was significantly reduced even under the relatively small increases in salinity level (1.5 and 3.0 ppt) imposed in this study. Interestingly, moderate flooding tended to increase productivity, although this relationship was not statistically significant. Significantly greater productivity was observed for plants grown in mineral soil compared with organic soil. These results indicate that any degree of saline influx into P. hemitomon-dominated wetlands will result in decreased vigor and localized decline of this species. Moderate increases in the degree of freshwater inundation may not be as damaging as originally expected and, in fact, may actually stimulate production. However, if increased flooding is accompanied by increased salinity levels, which is anticipated to occur, then the overall effect on this species will be detrimental.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700