Self-Resource Allocation and Scheduling Challenges for Heterogeneous Networks Deployment
详细信息    查看全文
  • 作者:Plamen T. Semov ; Vladimir Poulkov ; Albena Mihovska…
  • 关键词:Heterogeneous cellular networks ; WiFi ; CAPEX ; OPEX
  • 刊名:Wireless Personal Communications
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:87
  • 期:3
  • 页码:759-777
  • 全文大小:1,607 KB
  • 参考文献:1.Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). FeMTocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.CrossRef
    2.QUALCOMM. (2011). A comparison of LTE advanced HetNets and Wi-Fi. Qualcomm Incorporated. www.​qualcomm.​com/​media/​documents/​files/​a-comparison-of-lte-advanced-hetnets-and-wi-fi.​pdf
    3.Gass, R., & Diot, C. (2010). An experimental performance comparison of 3G and Wi-Fi. Lecture Notes in Computer Science, 6032, 71–80.CrossRef
    4.Golshan, R. (2011). LTE advanced: White paper. SAI Technology Inc. www.​saitechnology.​com
    5.Boundreau, G., et al. (2009). Interference coordination and cancelation for 4G networks. IEEE Communication Magazine, 47(4), 74–81.
    6.Ghosh, A., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine, 50, 54–64.CrossRef
    7.Lei, W., Hai, W., Yinghui Y., & Fei, Z. (2010). Heterogeneous network in LTE-advanced system. In Proceedings of the IEEE international conference on communication systems (ICCS) (pp. 156–160).
    8.Li, B., & Yang, D. (2011). Inter-cell downlink co-channel interference management through cognitive sensing in heterogeneous network for LTE-A. The Journal of China Universities of Posts and Telecommunications, 18(2), 25–32.CrossRef
    9.Fodor, G., et al. (2009). Intercell interference coordination in OFDMA networks and in the 3GPP long term evolution system. Journal of Communications, 4(7), 445.
    10.Bennis, M., & Niyato, D. (2010). A Q-learning based approach to interference avoidance in self-organized femtocell networks. In Proceedings of the IEEE GLOBECOM, Miami, FL, USA (pp. 706–710).
    11.Alsarhan, A., & Agarwal, A. (2009). Spectrum sharing in multi-service cognitive network using reinforcement learning. In Proceedings of the IEEE first UK-India international workshop on cognitive wireless systems (UKIWCWS), New Delhi, India (pp. 1–5).
    12.Mackenzie, A., & Wicker, S. (2001) Game theory and the design of selfconfiguring, adaptive wireless networks. IEEE Communication Magazine, 39(11), 126–131.
    13.Bennis, M., & Debbah, M. (2010). On spectrum sharing with underlaid femtocell networks. In Proceedings of the IEEE 21st international symposium on personal, indoor and mobile radio communications (PIMRC), Istanbul, Turkey (pp. 185–190).
    14.Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction, a Bradford book. Cambridge, MA: MIT Press.
    15.Semov, P., Mihovska, A., Prasad, R., & Poulkov, V. (2013). Use of positioning information for performance enhancement of uncoordinated heterogeneous network deployment. In Proceedings of IEEE wireless vitae, global wireless summit 2013, Atlantic City, NJ, USA.
    16.Gholami, M. R., et al. (2012). Improved position estimation using HybridnTW-TOA and TDOA in cooperative networks. IEEE Transactions on Signal Processing, 60(7), 3770–3789.
    17.Peng, R., & Sichitiu, M. L. (2006) Angle of arrival localization for wireless sensor networks. In Proceedings of the IEEE 3rd annual IEEE communications society on sensor and ad hoc communications and networks (SECON), Reston, VA, USA.
    18.Huang, C. J., et al. (2005). Application of support vector machines to bandwidth reservation in sectored cellular communications. Engineering Applications of Artificial Intelligence, 18(5), 585–594.CrossRef
    19.Poulkov, V., Koleva, P., Asenov, O., & Iliev, G. (2014). Combined power and inter-cell interference control for LTE based on role game approach. Springer Journal on Telecommunication Systems, 55(4), 481–490. ISSN 1018-4864.
    20.GPP. (2010). Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) system scenarios; (Release 10), Tech. Rep. TR 36.942. [Online]. http://​www.​3gpp.​org/​ftp/​Specs/​htmlinfo/​36942.​htm
    21. Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B; (Release 10), Tech. Rep. TR 36.931, May 2011. [Online]. http://​www.​3gpp.​org/​ftp/​Specs/​html-info/​36931.​htm
    22.GPP. (2010). Further advancements for E-UTRA physical layer aspects, 3rd Generation Partnership Project (3GPP), TS 36.814. [Online]. http://​www.​3gpp.​org/​ftp/​Specs/​html-info/​36814.​htm
    23.Mann, B. S. Small cell strategy: Evolution of modern HetNets. TeleWorld Solutions. http://​www.​teleworldsolutio​ns.​com/​downloads/​SmallCells-Evolution-of-Modern-HetNet.​pdf
    24.Huawei. LTE small cell versus Wi-Fi user experience. www.​huawei.​com/​ilink/​en/​download/​HW_​323974
    25.Werner, M., Moberg, P., & Skillemark, P. (2008). Cost assessment of radio access network deployments with relay nodes. In Proceedings of the ICT mobile and wireless communications summit, Stockholm, Sweden.
    26.BLiNQ Application Note. (2011). Distributed antenna systems and compact base stations: When to use which? BLiNQ Networks Inc. http://​www.​blinqnetworks.​com/​media/​uploads/​DAS-CBTS_​Application_​Note_​07082011.​pdf
  • 作者单位:Plamen T. Semov (1)
    Vladimir Poulkov (1)
    Albena Mihovska (2)
    Ramjee Prasad (2)

    1. Faculty of Telecommunications, Technical University of Sofia, Sofia, Bulgaria
    2. Center for TeleInfrastruktur (CTIF), Aalborg University, Aalborg, Denmark
  • 刊物类别:Engineering
  • 刊物主题:Electronic and Computer Engineering
    Signal,Image and Speech Processing
    Processor Architectures
  • 出版者:Springer Netherlands
  • ISSN:1572-834X
文摘
A reliable solution for meeting the high demand of throughput in areas called hotspots is the heterogeneous network. Heterogeneous networks are different depending on their coverage, their type of radio access technique and the way there are connected to the core network. This paper proposes a novel algorithm for semi-coordinated resource allocation and scheduling based on mobile positioning information, game theory and reinforcement learning technique. The capabilities of such an approach to support the practical deployment of heterogeneous networks is analyzed. Further, a reasoning strategy is proposed to justify the choice of Wi-Fi versus other small cell technologies from a practical deployment viewpoint.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700