Logarithmic Expansions and the Stability of Periodic Patterns of Localized Spots for Reaction–Diffusion Systems in search="http://marklogic
详细信息    查看全文
  • 作者:David Iron ; John Rumsey ; Michael J. Ward ; Juncheng Wei
  • 关键词:Singular perturbations ; Localized spots ; Logarithmic expansions ; Bravais lattice ; Floquet–Bloch theory ; Green’s function ; Nonlocal eigenvalue problem
  • 刊名:Journal of Nonlinear Science
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:24
  • 期:5
  • 页码:857-912
  • 全文大小:912 KB
  • 参考文献:1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, 9th edn. Dover, New York (1965)
    2. Ashcroft, N., Mermin, N.D.: Solid State Physics. HRW International Relations. CBS, New Delhi (1976)
    3. Beylkin, G., Kurcz, C., Monzón, L.: Fast algorithms for Helmholtz Green’s functions. Proc. R. Soc. Lond A 464, 3301-326 (2008) CrossRef
    4. Beylkin, G., Kurcz, C., Monzón, L.: Fast convolution with the free space Helmholtz Green’s functions. J. Comput. Phys. 228(8), 2770-791 (2009) CrossRef
    5. Callahan, T.K., Knobloch, E.: Symmetry-breaking bifurcations on cubic lattices. Nonlinearity 10(5), 1179-216 (1997) CrossRef
    6. Callahan, T.K., Knobloch, E.: Long-wavelength instabilities of three dimensional patterns. Phys. Rev. E. 64(3), 036214 (2001) CrossRef
    7. Chen, X., Oshita, Y.: An application of the modular function in nonlocal variational problems. Arch. Ration. Mech. Anal. 186(1), 109-32 (2007) CrossRef
    8. Chen, W., Ward, M.J.: The stability and dynamics of localized spot patterns in the two-dimensional Gray–Scott model. SIAM J. Appl. Dyn. Syst. 10(2), 582-66 (2011) CrossRef
    9. Doelman, A., Gardner, R.A., Kaper, T.: Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J. 50(1), 443-07 (2001) CrossRef
    10. Doelman, A., Gardner, R.A., Kaper, T.: A stability index analysis of 1-D patterns of the Gray–Scott model. Mem. AMS 155(737), 64 (2002)
    11. Iron, D., Ward, M.J., Wei, J.: The stability of spike solutions to the one-dimensional Gierer–Meinhardt model. Physica D 150(1-), 25-2 (2001) CrossRef
    12. Kolokolnikov, T., Ward, M.J., Wei, J.: Spot self-replication and dynamics for the Schnakenberg model in a two-dimensional domain. J. Nonlinear Sci. 19(1), 1-6 (2009)
    13. Kolokolnikov, T., Titcombe, M.S., Ward, M.J.: Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Eur. J. Appl. Math. 16(2), 161-00 (2005) CrossRef
    14. Knobloch, E.: Spatially localized structures in dissipative systems: open problems. Nonlinearity 21(1), T45–T60 (2008) CrossRef
    15. Krichever, I.M.: Spectral theory of two-dimensional periodic operators and its applications. Russ. Math. Surv. 44(2), 145-25 (1989) CrossRef
    16. Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhauser, Basel (1993) CrossRef
    17. Linton, C.M.: Lattice sums for the Helmholtz equation. SIAM Rev. 52(4), 630-74 (2010) CrossRef
    18. Moroz, A.: Quasi-periodic Green’s functions of the Helmholz and Laplace equations. J. Phys. A Math. Gen. 39(36), 11247-1282 (2006) CrossRef
    19. Muratov, C., Osipov, V.V.: Static spike autosolitons in the Gray–Scott model. J. Phys. A Math Gen. 33, 8893-916 (2000) CrossRef
    20. Muratov, C., Osipov, V.V.: Spike autosolitons and pattern formation scenarios in the two-dimensional Gray–Scott model. Eur. Phys. J. B. 22, 213-21 (2001) CrossRef
    21. Muratov, C., Osipov, V.V.: Stability of static spike autosolitons in the Gray–Scott model. SIAM J. Appl. Math. 62(5), 1463-487 (2002) CrossRef
    22. Nishiura, Y.: Far-From Equilibrium Dynamics, Translations of Mathematical Monographs, vol. 209. AMS Publications, Providence (2002)
    23. Piessens, R.: The Hankel transform. The Transforms and Applications Handbook. CRC Press, Boca Raton (2000)
    24. Pillay, S., Ward, M.J., Pierce, A., Kolokolnikov, T.: An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: two-dimensional domains. SIAM Multiscale Model. Simul. 8(3), 803-35 (2010) CrossRef
    25. Rozada, I., Ruuth, S., Ward, M.J.: The stability of localized spot patterns for the Brusselator on the sphere. SIADS. 13(1), 564-27 (2014)
    26. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313(3), 635-43 (2012) CrossRef
    27. Sigal, I.M., Tzaneteas, T.: Abrikosov vortex lattices at weak magnetic fields. J. Funct. Anal. 263(3), 675-02 (2012) CrossRef
    28. Sigal, I.M., Tzaneteas, T.: Stability of Abrikosov lattices under gauge-periodic perturbations. Nonlinearity 25(4), 1187-210 (2012) CrossRef
    29. Van der Ploeg, H., Doelman, A.: Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction–diffusion equations. Indiana Univ. Math. J. 54(5), 1219-301 (2005) CrossRef
    30. Vanag, V.K., Epstein, I.R.: Localized patterns in reaction–diffusion systems. Chaos 17(3), 037110 (2007) CrossRef
    31. Vladimirov, A.G., McSloy, J.M., Skryabin, D.S., Firth, W.J.: Two-dimensional clusters of solitary structures in driven optical cavities. Phys. Rev. E. 65, 046606 (2002) CrossRef
    32. Ward, M.J., Henshaw, W.D., Keller, J.: Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math. 53(3), 799-28 (1993) CrossRef
    33. Ward, M.J., Wei, J.: Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer–Meinhardt model. J. Nonlinear Sci. 13(2), 209-64 (2003) CrossRef
    34. Wei, J.: On single interior spike solutions for the Gierer–Meinhardt system: uniqueness and stability estimates. Eur. J. Appl. Math. 10(4), 353-78 (1999) CrossRef
    35. Wei, J.: Existence and stability of spikes for the Gierer–Meinhardt system. In: Chipot, M. (ed.) Handbook of Differential Equations, Stationary Partial Differential Equations, vol. 5, pp. 489-81. Elsevier, New York (2008)
    36. Wei, J., Winter, M.: Spikes for the two-dimensional Gierer–Meinhardt system: the weak coupling case. J. Nonlinear Sci. 11(6), 415-58 (2001) CrossRef
    37. Wei, J., Winter, M.: Existence and stability of multiple spot solutions for the Gray–Scott model in \({\mathbb{R}}^2\) . Physica D 176(3-), 147-80 (2003) CrossRef
    38. Wei, J., Winter, M.: Stationary multiple spots for reaction–diffusion systems. J. Math. Biol. 57(1), 53-9 (2008) CrossRef
  • 作者单位:David Iron (1)
    John Rumsey (2)
    Michael J. Ward (3)
    Juncheng Wei (3) (4)

    1. Department of Mathematics, Dalhousie University, Halifax, NS?, B3H 3J5, Canada
    2. Faculty of Management, Dalhousie University, Halifax, NS?, B3H 3J5, Canada
    3. Department of Mathematics, University of British Columbia, Vancouver, BC?, V6T 1Z2, Canada
    4. Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
  • ISSN:1432-1467
文摘
The linear stability of steady-state periodic patterns of localized spots in \({\mathbb {R}}^2\) for the two-component Gierer–Meinhardt (GM) and Schnakenberg reaction–diffusion models is analyzed in the semi-strong interaction limit corresponding to an asymptotically small diffusion coefficient \({\displaystyle \varepsilon }^2\) of the activator concentration. In the limit \({\displaystyle \varepsilon }\rightarrow 0\) , localized spots in the activator are centered at the lattice points of a Bravais lattice with constant area \(|\Omega |\) . To leading order in \(\nu ={-1/\log {\displaystyle \varepsilon }}\) , the linearization of the steady-state periodic spot pattern has a zero eigenvalue when the inhibitor diffusivity satisfies \(D={D_0/\nu }\) for some \(D_0\) independent of the lattice and the Bloch wavevector \({\pmb k}\) . From a combination of the method of matched asymptotic expansions, Floquet–Bloch theory, and the rigorous study of certain nonlocal eigenvalue problems, an explicit analytical formula for the continuous band of spectrum that lies within an \({\mathcal O}(\nu )\) neighborhood of the origin in the spectral plane is derived when \(D={D_0/\nu } + D_1\) , where \(D_1={\mathcal O}(1)\) is a detuning parameter. The periodic pattern is linearly stable when \(D_1\) is chosen small enough so that this continuous band is in the stable left half-plane \(\text{ Re }(\lambda ) for all \({\pmb k}\) . Moreover, for both the Schnakenberg and GM models, our analysis identifies a model-dependent objective function, involving the regular part of the Bloch Green’s function, that must be maximized in order to determine the specific periodic arrangement of localized spots that constitutes a linearly stable steady-state pattern for the largest value of \(D\) . From a numerical computation, based on an Ewald-type algorithm, of the regular part of the Bloch Green’s function that defines the objective function, it is shown within the class of oblique Bravais lattices that a regular hexagonal lattice arrangement of spots is optimal for maximizing the stability threshold in \(D\) .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700