Physical adsorption characterization of nanoporous materials: progress and challenges
详细信息    查看全文
  • 作者:Matthias Thommes (1)
    Katie A. Cychosz (1)
  • 关键词:Physical adsorption ; Argon 87聽K adsorption ; Pore condensation ; Hysteresis ; DFT聽pore size distribution ; Hierarchically structured materials
  • 刊名:Adsorption
  • 出版年:2014
  • 出版时间:February 2014
  • 年:2014
  • 卷:20
  • 期:2-3
  • 页码:233-250
  • 全文大小:1,216 KB
  • 参考文献:1. Aranovich, G., Donohue, M.: Determining surface areas from linear adsorption isotherms at supercritical conditions. J. Colloid Interface Sci. 194, 392鈥?97 (1997)
    2. Bakaev, V.A.: Rumpled graphite basal plane as a model heterogeneous carbon surface. J. Chem. Phys. 102, 1398鈥?404 (1995)
    3. Bandosz, T.J., Biggs, M.J., Gubbins, K.E., Hattori, Y., Iiyama, T., Kaneko, K., Pikunic, J., Thomson, K.: Molecular models of porous carbons. Chem. Phys. Carbon 28, 41鈥?28 (2003)
    4. Barton, T.J., Bull, L.M., Klemperer, W.G., Loy, D.A., McEnaney, B., Misono, M., Monson, P.A., Pez, G., Scherer, G.W., Vartuli, J.C., Yaghi, O.M.: Tailored porous materials. Chem. Mater. 11, 2633鈥?656 (1999)
    5. Bhatia, S.K.: Density functional theory analysis of the influence of pore wall heterogeneity on adsorption in carbons. Langmuir 18, 6845鈥?856 (2002)
    6. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations. J. Catal. 9, 8鈥?4 (1967a)
    7. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: X. Calculations of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores B. Applications. J. Catal. 9, 15鈥?7 (1967b)
    8. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. J. Catal. 10, 377鈥?90 (1968a)
    9. Broekhoff, J.C.P., de Boer, J.H.: Studies on pore systems in catalysts: XIV. Calculation of the cumulative distribution functions for slit-shaped pores from the desorption branch of a nitrogen sorption isotherm. J. Catal. 10, 391鈥?00 (1968b)
    10. Cazorla-Amor贸s, D., Alca帽iz-Monge, J., Linares-Solano, A.: Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12, 2820鈥?824 (1996)
    11. Cheng, L.S., Yang, R.T.: Improved Horvath鈥揔awazoe equations including spherical pore models for calculating micropore size distribution. Chem. Eng. Sci. 49, 2599鈥?609 (1994)
    12. Cimino, R., Cychosz, K.A., Thommes, M., Neimark, A.V.: Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf. A 437, 76鈥?9 (2013)
    13. Coasne, B., Galarneau, A., Pellenq, R.J., Di Renzo, F.: Adsorption, intrusion and freezing in porous silica: the view from the nanoscale. Chem. Soc. Rev. 42, 4141鈥?171 (2013)
    14. Cole, M.W., Saam, W.F.: Excitation spectrum and thermodynamic properties of liquid films in cylindrical pores. Phys. Rev. Lett. 32, 985鈥?88 (1974)
    15. Cychosz, K.A., Guo, X., Fan, W., Cimino, R., Gor, G.Y., Tsapatsis, M., Neimark, A.V., Thommes, M.: Characterization of the pore structure of three-dimensionally ordered mesoporous carbons using high resolution gas sorption. Langmuir 28, 12647鈥?2654 (2012)
    16. DeBoer, J.H.: Structure and properties of porous materials. In: Everett, D.H., Stone, F.S. (eds.) Colston papers. Butterworths, London (1958)
    17. Do, D.D., Do, H.D.: Modeling of adsorption on nongraphitized carbon surface: GCMC simulation studies and comparison with experimental data. J. Phys. Chem. B 110, 17531鈥?7538 (2006)
    18. Dubinin, M.M., Radushkevitch, L.V.: Dokl. Akak. Nauk. SSSR 55, 331 (1947)
    19. Dubinin, M.M., Timofeev, D.P.: Zh. Fiz. Khim. 22, 133 (1948)
    20. Everett, D.H.: Adsorption hysteresis. In: Flood, E.A. (ed.) The Solid鈥揋as Interface, pp. 1055鈥?113. Decker, New York (1967)
    21. Everett, D.H., Powl, J.C.: Adsorption in slit-like and cylindrical micropores in the Henry鈥檚 law region. A model for the microporosity of carbons. J. Chem. Soc., Faraday Trans. 1(72), 619鈥?36 (1976)
    22. Ferey, G.: Hybrid porous solids. Stud. Surf. Sci. Catal. 168, 327 (2007)
    23. Findenegg, G.H., Gross, S., Michalski, T.: Pore condensation in controlled-pore glass. An experimental test of the Saam鈥揅ole theory. Stud. Surf. Sci. Catal. 87, 71鈥?0 (1994)
    24. Findenegg, G.H., J盲hnert, S., M眉ter, D., Prass, J., Paris, O.: Fluid adsorption in ordered mesoporous solids determined by in situ small angle X-ray scattering. Phys. Chem. Chem. Phys. 12, 7211鈥?220 (2010)
    25. Furmaniak, S., Terzyk, A.P., Gauden, P.A., Harris, P.J.F., Kowalczyk, P.: The influence of carbon surface oxygen groups on Dubinin鈥揂stakhov equation parameters calculated from CO2 adsorption isotherm. J. Phys. 22, 085003 (2010)
    26. Garc铆a-Mart铆nez, J., Cazorla-Amor贸s, D., Linares-Solano, A.: Further evidence of the usefulness of CO2 adsorption to characterize microporous solids. Stud. Surf. Sci. Catal. 128, 485鈥?94 (2000)
    27. Garrido, J., Linares-Solano, A., Mart铆n-Mart铆nez, J.M., Molina-Sabio, M., Rodr铆guez-Reinoso, F., Torregrosa, R.: Use of N2 vs. CO2 in the characterization of activated carbons. Langmuir 3, 76鈥?1 (1987)
    28. Gelb, L.D., Gubbins, K.E., Radhakrishnan, R., Sliwinska-Bartkowiak, M.: Phase separation in confined systems. Rep. Prog. Phys. 62, 1573鈥?659 (1999)
    29. Gor, G.Y., Thommes, M., Cychosz, K.A., Neimark, A.V.: Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon 50, 1583鈥?590 (2012)
    30. Gor, G.Y., Neimark, A.V.: Adsorption-induced deformation of mesoporous solids: macroscopic approach and density functional theory. Langmuir 27, 6926鈥?931 (2011)
    31. Gor, G.Y., Paris, O., Prass, J., Russo, P.A., Carott Ribeiro, M.L., Neimark, A.V.: Adsorption of / n-pentane on mesoporous silica and adsorbent deformation. Langmuir 29, 8601鈥?608 (2013)
    32. Gregg, S.J., Sing, K.S.W.: Adsorption. Surface Area and Porosity. Academic Press, London (1982)
    33. Grosman, A., Ortega, C.: Capillary condensation in porous materials. Hysteresis and interaction without pore blocking/percolation process. Langmuir 24, 3977鈥?986 (2008)
    34. Gubbins, K.E.: Theory and simulation of adsorption in micropores. In: Fraissard, J., Conner, C.W. (eds.) Physical Adsorption: Experiment, Theory and Applications, pp. 65鈥?03. Kluwer Academic Publishers, The Netherlands (1997)
    35. Hartmann, M., Jung, D.: Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J. Mater. Chem. 20, 844鈥?57 (2010)
    36. Hirscher, M., Panella, B., Schmitz, B.: Metal鈥搊rganic frameworks for hydrogen storage. Microporous Mesoporous Mater. 129, 335鈥?39 (2010)
    37. Horvath, G., Kawazoe, K.: Method for the calculation of effective pore size distribution in molecular sieve carbon. J. Chem. Eng. Japan 16, 470鈥?75 (1983)
    38. Horikawa, T., Sekida, T., Hayashi, J., Katoh, M., Do, D.D.: A new adsorption鈥揹esorption model for water adsorption in porous carbons. Carbon 49, 416鈥?24 (2011)
    39. Hoffmann, F., Cornelius, M., Morell, M., Fr枚ba, M.: Periodic mesoporous organosilicas: past, presence and future. J. Nanosci. Nanotechn. 6, 265鈥?88 (2006)
    40. Hung, F.R., Bhattacharya, S., Coasne, B., Thommes, M., Gubbins, K.E.: Argon and krypton adsorption on templated mesoporous silicas: molecular simulation and experiment. Adsorption 13, 425鈥?37 (2007)
    41. Inayat, A., Knoke, I., Spieker, E., Schwieger, W.: Assemblies of mesoporous FAU-type zeolite nanosheets. Agew. Chem. Int. Ed. 51, 1965鈥?992 (2012)
    42. Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227鈥?232 (2004)
    43. Jagiello, J., Olivier, J.P.: A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C 113, 19382鈥?9385 (2009)
    44. Jagiello, J., Olivier, J.P.: 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55, 70鈥?0 (2013)
    45. J盲hnert, S., M眉ter, D., Prass, J., Zickler, G.A., Paris, O., Findenegg, G.H.:聽Pore structure and fluid sorption in ordered mesoporous silica. I. Experimental study by in situ small-angle X-ray scattering. J. Phys. Chem. C 113, 15201鈥?5210 (2009)
    46. Jaroniec, M., Solovyov, L.A.: Improvement of the Kruk鈥揓aroniec鈥揝ayari method for pore size analysis of ordered silica with cylindrical mesopores. Langmuir 22, 6757鈥?760 (2006)
    47. Kaneko, K., Roh, T., Fujimori, T.: Collective interactions of molecules with an interfacial solid. Chem. Lett. 41, 466鈥?75 (2012)
    48. Kaneko, K., Hanzawa, Y., Iiyama, T., Kanda, T., Suzuki, T.: Cluster-mediated water adsorption on carbon nanopores. Adsorption 5, 7鈥?3 (1999)
    49. Kim, T.W., Ryoo, R., Kruk, M., Gierszal, K.P., Jaroniec, M., Kamiya, S., Terasaki, O.: Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time. J. Phys. Chem. B 108, 11480鈥?1489 (2004)
    50. Kleitz, F.: Ordered mesoporous materials. In: Ertl, G., Koezinger, H., Schueth, F., Weitkamp, J. (eds.) Handbook of Heterogenous Catalysis, pp. 178鈥?19. Wiley, Weinheim (2008)
    51. Kleitz, F., B茅rub茅, F., Guillet-Nicolas, R., Yang, C.-M., Thommes, M.: Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J. Phys. Chem. C 114, 9344鈥?355 (2010)
    52. Kleitz, F., Choi, S.H., Ryoo, R.: Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun. 17, 2136鈥?137 (2003)
    53. Krause, K.M., Thommes, M., Brett, M.J.: Pore analysis of obliquely deposited nanostructures by krypton gas adsorption at 87聽K. Microporous Mesoporous Mater. 143, 166鈥?73 (2011)
    54. Kresge, C.T., Roth, W.J.: The discovery of mesoporous molecular sieves from the twenty year perspective. Chem. Soc. Rev. 42, 3663鈥?670 (2013)
    55. Kruk, M., Celer, E.B., Matos, J.R., Pikus, S., Jaroniec, M.: Synthesis of FDU-1 silica with narrow pore size distribution and tailorable pore entrance size in the presence of sodium chloride. J. Phys. Chem. B 109, 3838鈥?843 (2005)
    56. Kruk, M., Jaroniec, M., Sayari, A.: Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267鈥?273 (1997)
    57. Landers, J., Gor, G.Y., Neimark, A.V.: Density functional theory methods for characterization of porous materials. Colloids Surf. A 437, 3鈥?2 (2013)
    58. L盲ssig, D., Lincke, J., Moellmer, J., Reichenbach, C., Moeller, A., Gl盲ser, R., Kalies, G., Cychosz, K.A., Thommes, M., Staudt, R., Krautscheid, H.: A microporous copper metal-organic framework with high H2 and CO2 adsorption capacity at ambient pressure. Angew. Chem. Int. Ed. 50, 10344鈥?0348 (2011)
    59. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 97, 4786鈥?796 (1993)
    60. Li, H., Eddaoudi, M., O鈥橩eeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal鈥搊rganic framework. Nature 402, 276鈥?79 (1999)
    61. Li, K., Valla, J., Garcia-Martinez, J.: Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem (2013). doi:10.1002cctc.2013.201300345
    62. Libby, B., Monson, P.A.: Adsorption/desorption hysteresis in inkbottle pores: a density functional theory and Monte Carlo simulation study. Langmuir 20, 4289鈥?294 (2004)
    63. Liu, J.-C., Monson, P.A.: Does water condense in carbon pores? Langmuir 21, 10219鈥?0225 (2005)
    64. Liu, H., Seaton, N.A.: Determination of the connectivity of porous solids from nitrogen sorption measurements鈥擨II. Solids containing large mesopores. Chem. Eng. Sci. 49, 1869鈥?878 (1994)
    65. Liu, H., Zhang, L., Seaton, N.A.: Sorption hysteresis as a probe of pore structure. Langmuir 9, 2576鈥?582 (1993)
    66. Lowell, S., Shields, J., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area. Pore Size and Density. Springer, Amsterdam (2004)
    67. Lodewyckx, P., Vansant, E.F.: Water isotherms of activated carbons with small amounts of surface oxygen. Carbon 37, 1647鈥?649 (1999)
    68. Lodewyckx, P., Raymundo-Pinera, E., Vaclavikova, M., Berezovska, I., Thommes, M., Beguin, F., Dobos, G.: Suggested improvements in the parameters used for describing the low relative pressure region of the water vapour isotherms of activated carbons. Carbon 60, 556鈥?58 (2013)
    69. Lucena, S.M.P., Paiva, C.A.S., Silvino, P.F.G., Azevedo, D.C.S., Cavalcante, C.L.: The effect of heterogeneity in the randomly etched graphite model for carbon pore size characterization. Carbon 48, 2554鈥?565 (2010)
    70. Mascotto, S., Wallacher, D., Brandt, A., Hauss, T., Thommes, M., Zickler, G.A., Funari, S., Timmann, A., Smarsly, B.: Analysis of microporosity in ordered mesoporous hierarchically structured silica by combining physisorption with in situ small-angle scattering (SAXS and SANS). Langmuir 25, 12670鈥?2681 (2009)
    71. Mason, G.: The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption鈥揹esorption isotherms. J. Colloids Interface Sci. 88, 36鈥?6 (1982)
    72. Mintova, S., Cejka, J.: Micro/mesoporous composites. Stud. Surf. Sci. Catal. 168, 301鈥?26 (2007)
    73. Moellmer, J., Celer, E.B., Luebke, R., Cairns, A.J., Staudt, R., Eddaoudi, M., Thommes, M.: Insights on adsorption characterization of metal-organic frameworks: a benchmark study on the novel soc-MOF. Microporous Mesoporous Mater. 129, 345鈥?53 (2010)
    74. M枚ller, K., Bein, T.: Pore within pores鈥攈ow to craft ordered hierarchical zeolites. Science 333, 297鈥?98 (2011)
    75. Monson, P.A.: Understanding adsorption/desorption hysteresis for fluids in mesoporous materials using simple molecular models and classical density functional theory. Microporous Mesoporous Mater. 160, 47鈥?6 (2012)
    76. Monson, P.A.: Contact angles, pore condensation and hysteresis: insights from a simple molecular model. Langmuir 24, 12295鈥?2302 (2008)
    77. Naumov, S., Khokhlov, A., Valiullin, R., Karger, J., Monson, P.A.: Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores. Phys. Rev. E 78, 060601 (2008)
    78. Morishige, K., Tateishi, M., Hirose, F.: Change in desorption mechanism from pore blocking to cavitation with temperature for nitrogen in ordered silica with cagelike pores. Langmuir 22, 9220鈥?224 (2006)
    79. Myasaka, K., Hano, H., Kubota, Y., Lin, Y., Ryoo, R., Takata, M., Kitagawa, S., Neimark, A.V., Terasaki, O.: A stand-alone mesoporous crystal structure model from in situ X-ray diffraction: nitrogen adsorption on 3D cagelike mesoporous silica SBA-16. Chem. Eur. J. 18, 10300 (2012)
    80. Na, K., Jo, C., Kim, J., Cho, K., Jung, J., Seo, Y., Messinger, R.J., Chmelka, B.F., Ryoo, R.: Directing zeolite structures into hierarchically nanoporous architectures. Science 333, 328鈥?32 (2011)
    81. Neimark, A.V.: The method of indeterminate Lagrange multipliers in nonlocal density functional theory. Langmuir 11, 4183鈥?184 (1995)
    82. Neimark, A.V.: Percolation theory of capillary hysteresis phenomena and its application for characterization of porous solids. Stud. Surf. Sci. Catal. 62, 67鈥?4 (1991)
    83. Neimark, A.V., Ravikovitch, P.I.: Capillary condensation in MMS and pore structure characterization. Micropor. Mesopor. Mat. 44, 697鈥?07 (2001)
    84. Neimark, A.V., Ravikovitch, P.I., Vishnyakov, A.: Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores. J. Phys. 15, 347鈥?65 (2003)
    85. Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47, 1617鈥?628 (2009)
    86. Neimark, A.V., Sing, K.S.W., Thommes, M.: Surface area and porosity. In: Ertl, G., Koezinger, H., Schueth, F., Weitkamp, J. (eds.) Handbook of Heterogeneous Catalysis, pp. 721鈥?37. Wiley, New York (2008)
    87. Neimark, A.V., Coudert, F.X., Boutin, A., Fuchs, A.H.: Stress-based model for the breathing of metal鈥搊rganic framework. Phys. Chem. Lett. 1, 445鈥?49 (2010)
    88. Nguyen, T.X., Cohaut, N., Bae, J.-S., Bhatia, S.K.: New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. Langmuir 24, 7912鈥?922 (2008)
    89. Nguyen, P.T.M., Fan, C., Do, D.D., Nicholson, D.: On the cavitation-like pore blocking in ink-bottle pore: evolution of hysteresis loop with neck size. J. Phys. Chem. C 117, 5475鈥?484 (2013a)
    90. Nguyen, P.T., Do, D.D., Nicholson, D.: Simulation study of hysteresis of argon adsorption in a conical pore and a constricted cylindrical pore. J. Colloid Interface Sci. 396, 242鈥?50 (2013b)
    91. Ohba, T., Kanoh, H., Kaneko, K.: Cluster-growth-induced water adsorption in hydrophobic carbon nanopores. J. Phys. Chem. B 108, 14964鈥?4969 (2004)
    92. Olivier, J.P.: Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon 36, 1469鈥?472 (1998)
    93. Olivier, J.P., Conklin, W.B., Szombathely, M.V.: Determination of pore size distribution from density functional theory: a comparison of nitrogen and argon results. Stud. Surf. Sci. Catal. 87, 81鈥?9 (1994)
    94. Parlar, M., Yortsos, Y.C.: Percolation theory of vapor adsorption鈥揹esorption processes in porous materials. J. Colloid Interface Sci. 124, 162鈥?76 (1988)
    95. Pauport茅, T., Rathousky, J.: Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants. J. Phys. Chem. C 111, 7639鈥?644 (2007)
    96. P茅rez-Ram铆rez, J., Mitchell, S., Verboekend, D., Milina, M., Michels, N.-L., Krumeich, F., Marti, N., Erdmann, M.: Expanding the horizons of hierarchical zeolites: beyond laboratory curiosity towards industrial revolution. ChemCatChem 3, 1731鈥?734 (2011)
    97. Rasmussen, C.J., Vishnyakov, A., Thommes, M., Smarsly, B.M., Kleitz, F., Neimark, A.V.: Cavitation in metastable liquid nitrogen confined to nanoscale pores. Langmuir 26, 10147鈥?0157 (2010)
    98. Ravikovitch, P.I., Neimark, A.V.: Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures. Langmuir 18, 1550鈥?560 (2002a)
    99. Ravikovitch, P.I., Neimark, A.V.: Experimental confirmation of different mechanisms of evaporation from ink-bottle type pores: equilibrium, pore blocking, and cavitation. Langmuir 18, 9830鈥?837 (2002b)
    100. Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311鈥?320 (2000)
    101. Reichenauer, G., Scherer, G.W.: Nitrogen adsorption in compliant materials. J. Non-Cryst. Solids 277, 162鈥?72 (2000)
    102. Reichenauer, G.: Micropore adsorption dynamics in synthetic hard carbons. Adsorption 11, 467鈥?71 (2005)
    103. Rios, R.V.R.A., Silvestre-Albero, J., Sep煤lveda-Escribano, A., Molina-Sabio, M., Rodr铆guez-Reinoso, F.: Kinetic restrictions in the characterization of narrow microporosity in carbon materials. J. Phys. Chem. C 111, 3803鈥?805 (2007)
    104. Rojas, F., Kornhauser, I., Felipe, C., Esparza, J.M., Cordero, S., Dom铆nguez, A., Riccardo, J.L.: Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Phys. Chem. Chem. Phys. 4, 2346鈥?355 (2002)
    105. Roth, W.J., Vartuli, J.C.: Synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 157, 91鈥?10 (2005)
    106. Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., Unger, K.K.: Recommendations for the characterization of porous solids. Pure Appl. Chem. 66, 1739鈥?748 (1994)
    107. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., Unger, K.: Liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl. Chem. 84, 107鈥?36 (2012)
    108. Rouquerol, F., Rouquerol, J., Sing, K.S.W., Llewellyn, P., Maurin, G.: Adsorption by Powders and Porous Solids. Academic Press, London (2013)
    109. Rouquerol, J., Llewellyn, P., Rouquerol, F.: Is the BET equation applicable to micropore adsorbents? Stud. Surf. Sci. Catal. 160, 49鈥?6 (2007)
    110. Saito, A., Foley, H.C.: Curvature and parametric sensitivity in models for adsorption in micropores. AIChE J. 37, 429鈥?36 (1991)
    111. Sarkisov, L., Monson, P.A.: Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir 17, 7600鈥?604 (2001)
    112. Sel, O., Brandt, A., Wallacher, D., Thommes, M., Smarsly, B.: Pore hierarchy in mesoporous silicas evidenced by in situ SANS during nitrogen physisorption. Langmuir 23, 4724鈥?727 (2007)
    113. Seaton, N.A., Walton, J.P.R.B., Quirke, N.: A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 27, 853鈥?61 (1989)
    114. Serrano, D.P., Aguado, J., Morales, G., Rodr铆guez, J.M., Peral, A., Thommes, M., Epping, J.D., Chmelka, B.F.: Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chem. Mater. 21, 641鈥?54 (2009)
    115. Shpeizer, B.G., Bakhmutov, V.I., Clearfield, A.: Supermicroporous alumina鈥搒ilica zinc oxides. Microporous Mesoporous Mater. 90, 81鈥?6 (2006)
    116. Shpeizer, B.G., Bakhmoutov, V.I., Zhang, P., Prosvirin, A.V., Dunbar, K.R., Thommes, M., Clearfield, A.: Transition metal鈥揳lumina/silica supermicroporous composites with tunable porosity. Colloids Surfaces A 357, 105鈥?15 (2010)
    117. Shen, J., Monson, P.A.: A molecular model of adsorption in a dilute semiflexible porous network. Mol. Phys. 100, 2031鈥?039 (2002)
    118. Silvestre-Albero, J., Silvestre-Albero, A., Rodr铆guez-Reinoso, F., Thommes, M.: Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4聽K), carbon dioxide (273聽K) and argon (87.3聽K) adsorption in combination with immersion calorimetry. Carbon 50, 3128鈥?133 (2012)
    119. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603鈥?19 (1985)
    120. Soares Maia, D.A., de Oliveira, J.C.A., Toso, J.P., Sapag, K., L贸pez, R.H., Azevedo, D.C.S., Cavalcante, C.L., Zgrablich, G.: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853鈥?61 (2011)
    121. Tanaka, H., Hiratsuka, T., Nishiyama, N., Mori, K., Miyahara, M.T.: Capillary condensation in mesoporous silica with surface roughness. Adsorption 19, 631鈥?41 (2013)
    122. Stoeckli, F., Lavanchy, A.: The adsorption of water by active carbons, in relation to their chemical and structural properties. Carbon 38, 475鈥?77 (2000)
    123. Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31, 2672鈥?679 (1985)
    124. Tarazona, P., Evans, R.: A simple density functional theory for inhomogeneous liquids. Mol. Phys. 52, 847鈥?57 (1984)
    125. Thommes, M.: Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82, 1059鈥?073 (2010)
    126. Thommes, M., Findenegg, G.H.: Pore condensation and critical-point shift of a fluid in controlled-pore glass. Langmuir 10, 4270鈥?277 (1994)
    127. Thommes, M.: Physical adsorption characterization of ordered and amorphous mesoporous materials. In: Lu, G.Q., Zhao, X.S. (eds.) Nanoporous Materials Science and Engineering, pp. 317鈥?64. World Scientific, London (2004)
    128. Thommes, M.: Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. Stud. Surf. Sci. Catal. 168, 495鈥?23 (2007)
    129. Thommes, M., Cychosz, K.A., Neimark, A.V.: Advanced physical adsorption characterization of nanoporous carbons. In: Tascon, J.M.D. (ed.) Novel Carbon Adsorbents, pp. 107鈥?45. Elsevier, Oxford (2012a)
    130. Thommes, M., Mitchell, S., P茅rez-Ram铆rez, J.: Surface and pore structure assessment of hierarchical MFI zeolites by advanced water and argon sorption studies. J. Phys. Chem. C 116, 18816鈥?8823 (2012b)
    131. Thommes, M., Nishyama, N., Tanaka, S.: Aspects of a novel method for the pore size analysis of thin silica films based on krypton adsorption at liquid argon temperature (87.3聽K). Stud. Surf. Sci. Catal. 165, 551鈥?54 (2007)
    132. Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V.: Adsorption hysteresis of nitrogen and argon in pore networks and characterization of novel micro- and mesoporous silicas. Langmuir 22, 756鈥?64 (2006)
    133. Thommes, M., Morlay, C., Ahmad, R., Joly, J.P.: Assessing surface chemistry and pore structure of active carbons by a combination of physisorption (H2O, Ar, N2, CO2). XPS and TPD-MS. Adsorption 17, 653鈥?61 (2011)
    134. Thommes, M., Morell, J., Cychosz, K.A., Fr枚ba, M.: Combining nitrogen, argon, and water adsorption for advanced characterization of ordered mesoporous carbons (CMKs) and periodic mesoporous organosilicas (PMOs). Langmuir (2013). doi:10.1021/la402832b
    135. Thommes, M., K枚hn, R., Fr枚ba, M.: Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled pore glass at temperatures above and below the bulk triple point. Appl. Surf. Sci. 196, 239鈥?49 (2002)
    136. Thomson, K.T., Gubbins, K.E.: Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir 16, 5761鈥?773 (2000)
    137. Turner, A.R., Quirke, N.A.: Grand canonical Monte Carlo study of adsorption on graphitic surfaces with defects. Carbon 36, 1439鈥?446 (1998)
    138. Valiullin, R., Naumov, S., Galvosas, P., Karger, J., Woo, H.J., Porcheron, F., Monson, P.A.: Exploration of molecular dynamics during transient sorption of fluids in mesoporous materials. Nature 443, 965鈥?68 (2006)
    139. Valiullin, R., Kaerger, J.: The impact of mesopores on mass transfer in nanoporous materials: evidence of diffusion measurement by NMR. Chem. Ing. Tech. 83, 166 (2011)
    140. Van Bemmelen, J.M.: Die absorption das wasser in den kolloiden, besonders in dem gel der kiesels盲ure. Z. Anorg. Allg. Chem. 13, 233鈥?56 (1897)
    141. Vishnyakov, A., Neimark, A.V.: Monte Carlo simulation test of pore blocking effects. Langmuir 19, 3240鈥?247 (2003)
    142. Vishnyakov, A., Ravikovitch, P.I., Neimark, A.V.: Molecular level models for CO2 sorption in nanopores. Langmuir 15, 8736鈥?742 (1999)
    143. Wall, G.C., Brown, R.J.C.: The determination of pore-size distributions from sorption isotherms and mercury penetration in interconnected pores: the application of percolation theory. J. Colloid Interface Sci. 82, 141鈥?49 (1981)
    144. Woo, H.-J., Sarkisov, L., Monson, P.A.: Mean-field theory of fluid adsorption in a porous glass. Langmuir 17, 7472鈥?475 (2001)
    145. Zhang, X., Liu, D., Xu, D., Asahina, S., Cychosz, K.A., Agrawal, K.V., AlWahedi, Y., Bhan, A., AlHashimi, S., Terasaki, O., Thommes, M., Tsapatsis, M.: Synthesis of self-pillared nanosheets by repetitive branching. Science 336, 1684鈥?687 (2012)
    146. Zhao, D., Wang, Y.: The synthesis of mesoporous molecular sieves. Stud. Surf. Sci. Catal. 168, 241鈥?00 (2007)
    147. Zhu, Y., Murali, S., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., Ruoff, R.S.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537鈥?541 (2011)
  • 作者单位:Matthias Thommes (1)
    Katie A. Cychosz (1)

    1. Quantachrome Instruments, 1900 Corporate Dr, Boynton Beach, FL, 33426, USA
  • ISSN:1572-8757
文摘
Within the last two decades major progress has been achieved in understanding the adsorption and phase behavior of fluids in ordered nanoporous materials and in the development of advanced approaches based on statistical mechanics such as molecular simulation and density functional theory (DFT) of inhomogeneous fluids. This progress, coupled with the availability of high resolution experimental procedures for the adsorption of various subcritical fluids, has led to advances in the structural characterization by physical adsorption. It was demonstrated that the application of DFT based methods on high resolution experimental adsorption isotherms provides a much more accurate and comprehensive pore size analysis compared to classical, macroscopic methods. This article discusses important aspects of major underlying mechanisms associated with adsorption, pore condensation and hysteresis behavior in nanoporous solids. We discuss selected examples of state-of-the-art pore size characterization and also reflect briefly on the existing challenges in physical adsorption characterization.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700