Fabrication of Three-Dimensionally Ordered Macroporous TiO2 Films with Enhanced Photovoltaic Conversion Efficiency
详细信息    查看全文
  • 作者:Yang Chen (1) (2)
    Zhaofang Tang (1)
    Zhigang Chen (3)
  • 关键词:Colloidal crystal template ; Three ; dimensionally ordered macroporous TiO2 ; Photoanode ; Dye ; sensitized solar cell
  • 刊名:Journal of Inorganic and Organometallic Polymers and Materials
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:23
  • 期:4
  • 页码:839-845
  • 全文大小:459KB
  • 参考文献:1. A. Stein, B.E. Wilson, S.G. Rudisill, Design and functionality of colloidal–crystal-templated materials–chemical applications of inverse opals. Chem. Soc. Rev. (2013). doi:10.1039/C2CS35317B
    2. B. O’Regan, M. Gr?tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-40 (1991) CrossRef
    3. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Gr?tzel, Astable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature 414, 338-44 (2001) CrossRef
    4. M. Gr?tzel, Dye-sensitized solar cells. J. Photoch. Photobio. C. 4, 145-53 (2003) CrossRef
    5. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595-663 (2010) CrossRef
    6. A. Yella, H. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, C. Yeh, S.M. Zakeeruddin, M. Gr?tzel, Porphyrin-sensitized solar cell with cobalt(II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629-34 (2011) CrossRef
    7. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215-18 (2006) CrossRef
    8. M. Ye, X. Xin, C. Lin, Z. Lin, High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 11, 3214-220 (2011) CrossRef
    9. S. Meng, J. Ren, E. Kaxiras, Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: Enhanced light absorption and ultrafast electron injection. Nano Lett. 8, 3266-272 (2008) CrossRef
    10. Y.P. Lin, Y.Y. Chen, Y.C. Lee, Y.W. Chen-Yang, Effect of wormhole-like mesoporous anatase TiO2 nanofiber prepared by electrospinning with ionic liquid on dye-sensitized solar cells. J. Phys. Chem. C. 116, 13003-3012 (2012) CrossRef
    11. W.H. Jung, N. Kwak, T.S. Hwang, K.B. Yi, Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning. Appl. Surf. Sci. 261, 343-52 (2012) CrossRef
    12. K. Fan, W. Zhang, T. Peng, J. Chen, F. Yang, Application of TiO2 fusiform nanorods for dye-sensitized solar cells with significantly improved efficiency. J. Phys. Chem. C. 115, 17213-7219 (2011) CrossRef
    13. B. Liu, E.S. Aydil, J. Am, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Chem. Soc. 131, 3985-990 (2009) CrossRef
    14. J. Jiang, F. Gu, W. Shao, C. Li, Fabrication of spherical multi-hollow TiO2 nanostructures for photoanode film with enhanced light-scattering performance. Ind. Eng. Chem. Res. 51, 2838-845 (2012) CrossRef
    15. J. Song, H.B. Yang, X. Wang, S.Y. Khoo, C.C. Wong, X. Liu, C.M. Li, Improved utilization of photogenerated charge using fluorine-doped TiO2 hollow spheres scattering layer in dye-sensitized solar cells. ACS Appl. Mater. Inter. 4, 3712-717 (2012) CrossRef
    16. J. Shin, J.H. Moon, Bilayer inverse opal TiO2 electrodes for dye-sensitized solar cells via post-treatment. Langmuir 27, 6311-315 (2011) CrossRef
    17. A. Mihi, M.E. Calvo, J.A. Anta, H. Míguez, Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C. 112, 13-7 (2008) CrossRef
    18. S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, J. Am, Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. Chem. Soc. 125, 6306-310 (2003) CrossRef
    19. L.I. Halaoui, N.M. Abrams, T.E. Mallouk, Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. J. Phys. Chem. B. 109, 6334-342 (2005) CrossRef
    20. S.A. Lee, N.M. Abrams, P.G. Hoertz, G.D. Barber, L.I. Halaoui, T.E. Mallouk, Coupling of titania inverse opals to nanocrystalline titania layers in dye-sensitized solar cells. J. Phys. Chem. B. 112, 14415-4421 (2008) CrossRef
    21. J. Choi, S. Kwon, Y. Jeong, I. Kim, K. Kim, Atomic layer deposition of Ta-doped TiO2 electrodes for dye-sensitized solar cells. J. Electrochem. Soc. 158, B749–B753 (2011) CrossRef
    22. Y. Chen, J.X. Lu, Z.G. Chen, Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives. Microelectron. Eng. 88, 200-05 (2011) CrossRef
    23. L.K. Wang, Y. Wan, Y.Q. Li, Z.Y. Cai, H.L. Li, X.S. Zhao, Q. Li, Binary colloidal crystals fabricated with a horizontal deposition method. Langmuir 25, 6753-759 (2009) CrossRef
    24. Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, X.S. Zhao, Fabrication of TiO2 binary inverse opals without overlayers via the sandwich–vacuum infiltration of precursor. Langmuir 27, 5157-164 (2011) CrossRef
    25. H.N. Li, L. Zhang, H.X. Dai, H. He, Facile synthesis and unique physicochemical properties of three-dimensionally ordered macroporous magnesium oxide, gamma-alumina, and ceria–zirconia solid solutions with crystalline mesoporous walls. Inorg. Chem. 48, 4421-434 (2009) CrossRef
    26. Y. Xu, X.L. Zhu, Y.P. Dan, J.H. Moon, V.W. Chen, A.T. Johnson, J.W. Perry, S. Yang, Electrodeposition of three-dimensional titania photonic crystals from holographically patterned microporous polymer templates. Chem. Mater. 20, 1816-823 (2008) CrossRef
    27. H.P. Klug, L.F. Alexander, / X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. (Wiley, New York, 1954), p. 716
  • 作者单位:Yang Chen (1) (2)
    Zhaofang Tang (1)
    Zhigang Chen (3)

    1. School of Materials Science and Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
    2. Key Laboratory of Advanced Metallic Materials of Changzhou City, Changzhou University, Changzhou, 213164, Jiangsu, China
    3. Department of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou, 215011, Jiangsu, China
  • ISSN:1574-1451
文摘
Negative-charged polystyrene (PS) microspheres were prepared through a soap-free emulsion polymerization method using potassium persulfate as initiator. Three-dimensionally ordered macroporous TiO2 films were fabricated using the high-quality PS colloidal crystals templates obtained via a horizontal deposition method. The as-prepared macroporous TiO2 films were applied as the photoanodes in dye-sensitized solar cell (DSSC). The microstructure of the products were characterized by X-ray diffractometer, fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption–desorption analyzer. The results showed that the macroporous TiO2 films replicated well the 3D ordered structure derived from PS colloidal crystal templates and revealed a relatively large specific surface area (69.99?m2/g), which could increase the capacity of TiO2 film anode for absorbing dyes and scattering light. The photocurrent–voltage (I-em class="a-plus-plus">V) characteristics of DSSC were measured by a digital source meter under simulated solar light. The results indicated that the introduction of an ordered macroporous TiO2 interfacial layer increased the photovoltaic conversion efficiency, which was improved by 68?% from 3.61 to 6.08?%, as compared to a device using a bare P25 TiO2 photoanode. Our results showed that the hierarchically ordered macroporous TiO2 bilayer films photoanode for DSSC could be helpful to improve the photovoltaic conversion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700