Variations in mercury and other trace elements contents in soil and in vine leaves from the Almadén Hg-mining district
详细信息    查看全文
  • 作者:Jose-Angel Amorós (1) (2)
    José María Esbrí (1)
    Francisco-Jesús García-Navarro (1) (2)
    Caridad Pérez-de-los-Reyes (1) (2)
    Sandra Bravo (1) (2)
    Bego?a Villase?or (1) (2)
    Pablo Higueras (1)
  • 关键词:Bioaccumulation ; Metallic trace element ; Pollution
  • 刊名:Journal of Soils and Sediments
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:14
  • 期:4
  • 页码:773-777
  • 全文大小:270 KB
  • 参考文献:1. Amorós JA, Pérez-de-los-Reyes C, García-Navarro FJ, Sánchez CJ, Jiménez-Ballesta R (2010) Description of red soils in a semiarid climate and evaluation for vineyard (Vitis vinifera, L.) use. Fresenius Environ Bull 19:1199-207
    2. Amorós JA, Pérez-de-los-Reyes C, García-Navarro FJ, Sánchez CJ, García R, Jiménez-Ballesta R (2011) Trace elements distribution in red soils under semiarid Mediterranean environment. Int J Geosci 2:84-7. doi:10.4236/ijg.2011.22009 CrossRef
    3. Bargagli R (1995) The elemental composition of vegetation and the possible incidence of soil contamination of samples. Sci Total Environ 176:121-28 CrossRef
    4. Barranco D, Fernández Escobar R, Rallo Romers L (2004) El cultivo del olivo. Editorial Mundiprensa. 5a edición. 800 pp
    5. Carlevalis JJ, De La Horra JL, Serrano F, Rodriguez J (1992) La fertilidad de los principales suelos agrícolas de la zona oriental de la provincia de Ciudad Real. La Mancha y Campo de Montiel. C.S.I.C. and J.J.C.C. Castilla-La Mancha, Vol. 1. Madrid. 294 pp
    6. Conde P, Martín J, De la Horra J, Jiménez-Ballesta R (2009) Trace elements contents in different soils of a semiarid Mediterranean environment: Castilla-La Mancha, Spain. Fresenius Environ Bull 18:858-67
    7. FAO (2006) Guidelines for Soil Description, 4th edn. AO/UNESCO, Rome
    8. García-Navarro F, Amorós JA, Sánchez C, Jiménez-Ballesta R (2011) Red soil geochemistry in a semiarid Mediterranean environment and its suitability for vineyards. Environ Geochem Health 33:279-89 CrossRef
    9. Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, Munhá J (1999) The Almadén mercury mining district, Spain. Miner Deposita 34:539-48 CrossRef
    10. Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80:95-04 CrossRef
    11. Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez-delos-Reyes C, Moreno G (2011) Time and space variations in mercury and other trace elements contents in olive-tree leaves from the Almadén Hg-mining district. J Geochem Explor 123:143-51
    12. Huckabee JW, Sanz Diaz F, Janzen SA, Solomon J (1983) Distribution of mercury in vegetation at Almaden, Spain. Environ Pollut Ser A Ecol Biol 30:211-24 CrossRef
    13. Hugget JM (2006) “Geology and wine: a review- Proceedings of Geologists-Association, 117:236-47
    14. Jiménez-Ballesta R, Conde-Bueno P, Martín-Rubí JA, García-Jiménez R (2010) Pedo-geochemical baseline contents levels and soil quality reference values of trace elements in soils from the Mediterranean (Castilla La Mancha, Spain). Centre Eur J Geosci 2:441-54 CrossRef
    15. Kabata-Pendias A (2001) Trace Elements in Soils and Plants, 3rd edn. CRC Press, Boca Raton, USA, 413 pp
    16. Lanyon D, Cass A, Hansen D (2004) The Effect of Soil Properties on Vine Performance CSIRO Land and Water Technical Report 34/04. Glen Osmond, Australia, 54 pp
    17. Lindberg SE, Jackson DR, Huckabee JW (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J Environ Qual 8:572-78 CrossRef
    18. Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emissions and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monitor, in press. doi: 10.1039/C1EM10694E
    19. Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): the old metallurgical precinct (1794 to 1861 ad ) and surrounding areas. J Geochem Explor 109:70-7 CrossRef
    20. Millán R, Gamarra R, Schmid T, Vera R, Sierra MJ, Quejido AJ, Sánchez DM, Fernández M (2004) Mercury content in natural vegetation of three plots in the mining area of Almadén (Spain). RMZ–Mater Geoenviron 51:155-58
    21. Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernández M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368:79-7 CrossRef
    22. Millan R, Schmid T, Sierra MJ, Carrasco-Gil S, Villadóniga M, Rico C, Ledesma DMS, Puente FJD (2011) Spatial variation of biological and pedological properties in an area affected by a metallurgical mercury plant: Almadenejos (Spain). Appl Geochem 26:174-81 CrossRef
    23. Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on earth. Environ Geochem Health 28:487-98 CrossRef
    24. Moreno-Jiménez E, Gamarra R, Carpena-Ruiz RO, Millán R, Pe?alosa JM, Esteban E (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 63:1969-973 CrossRef
    25. Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379-22 CrossRef
    26. Pérez G, López-Mesas M, Valiente M (2008) Assessment of heavy metals remobilization by fractionation: comparison of leaching tests applied to roadside sediments. Environ Sci Technol 42:2309-315 CrossRef
    27. Pillet F (2007) Geografía de Castilla-La Mancha. I.S.B.N.no: 978-84-935-656-0-2. 344 pp
    28. Saupé F (1990) Geology of the Almadén mercury deposit, province of Ciudad Real, Spain. Econ Geol 85:482-10 CrossRef
    29. Sparks DL (2003) Environmental Soil Chemistry. Editorial Elsevier
    30. Vavoulidou E, Avramides EJ, Papadopoulos P, Dimirkou A (2004) Trace metals in different crop-cultivation systems in Greece. Water Air Soil Pollut: Focus 4:631-40 CrossRef
    31. Wild A (1992) Condiciones del Suelo y el Desarrollo de las Plantas según Russell. Ed. Mundiprensa, Madrid, 1045
    32. White RE (2009) Understanding Vineyard Soils. Oxford University Press. 230 pp
    33. Zeiner M, Steffan I, Juranovic I (2005) Determination of trace elements in olive oil by ICP-AES and ETA-AAS: a pilot study on the geographical characterization. Microchem J 81:171-76 CrossRef
  • 作者单位:Jose-Angel Amorós (1) (2)
    José María Esbrí (1)
    Francisco-Jesús García-Navarro (1) (2)
    Caridad Pérez-de-los-Reyes (1) (2)
    Sandra Bravo (1) (2)
    Bego?a Villase?or (1) (2)
    Pablo Higueras (1)

    1. Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Pl. Manuel Meca 1, Almadén, 13400, Ciudad Real, Spain
    2. Escuela de Ingenieros Agrónomos de Ciudad Real, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071, Ciudad Real, Spain
  • ISSN:1614-7480
文摘
Purpose Vines (Vitis vinifera, L.) are a very important agricultural resource for Spain in general and for the Castilla-La Mancha region in particular, providing important productions of wines. Grapes and raisins are used for direct consumption too. In this work, we study analytical constraints regarding metallic trace elements uptake, focusing on Hg, from vines growing in the Almadén mercury mining district, the world's largest producer of this element, inactive nowadays. Materials and methods The study started with the analysis of these metals in soils and sets of vines leaves from seven sites located at different distances from the Almadén Hg mine. The samples of soils were dried at ambient temperature for 1?week. They were then sifted (<2?mm) and were stored for subsequent analysis. The leaves were dried and the leaf blade and petiole were separated. About 2?g of each sample were hand milled and analyzed using the same fluorescence spectrometer. Total mercury in soils and vine leaves were determined using a Lumex RA-915+ device, an atomic absorption spectrometer with a pyrolysis unit (RP-91c). Results and discussion Results show significant correlations between soil and leaves contents for total and organic mercury (R--.934 and 0.984, respectively). Hg contents range in soil from 2,376 to 0.04?mg/kg in non-polluted places. For the organic fraction, the range varies between 197.49 and 3.15?mg/kg. Total Hg contents measured in leaves were from 5.14?mg/kg (close to dump zone of the mine) to 0.03?mg/kg in the proximity of Carrión de Calatrava, located some 100?km away from Almadén. Mercury reaches maximum in the proximity of known sources of the element: the mining and/or metallurgical areas of Almadén and Almadenejos. Conclusions Soils from the study area contain normal contents in trace metals, and these are conditioned by the local geology or urban locations of the area. Trace metals contents in leaves do not show a relationship with soil contents, possibly due to the low bioavailability of these elements in the soils investigated. Mercury is, as expected for this area, an exception to this trend, with very high concentrations that reach maximum values in the proximity of the known sources of the element: the proximity of mining and/or metallurgical areas in Almadén and Almadenejos.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700