Numerical Investigation on the Effects of a Precursor Wetting Film on the Displacement of Two Immiscible Phases Along a Channel
详细信息    查看全文
  • 作者:Kai Bao ; Amgad Salama ; Shuyu Sun
  • 关键词:Two ; phase flow ; Precursor wetting layer ; Moving contact line ; Coupled cahn ; hillard and Navier ; stokes system
  • 刊名:Flow, Turbulence and Combustion
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:96
  • 期:3
  • 页码:757-771
  • 全文大小:806 KB
  • 参考文献:1.Kawamoto, K., Mashino, S., Oda, M., Miyazaki, T.: Moisture structures of laterally expanding fingering flows in sandy soils. Geoderma 119(3-4), 197–217 (2004)CrossRef
    2.Tamai, N., Asaeda, T., Jeevaraj, C.G.: Fingering in two-dimensional, homogeneous, unsaturated porous media. Soil Sci. 144, 107–112 (1987)CrossRef
    3.Baker, R.S., Hillel, D.: Laboratory tests of a theory of fingering during infiltration into layered soils. Soil Sci. Soc. Am. J. 54, 20–30 (1990)CrossRef
    4.Yao, T.-M., Hendrickx, J.M.H.: Stability of wetting fronts in dry homogeneous soils under low infiltration rates. Soil Sci. Soc. Am. J. 60, 20–28 (1996)CrossRef
    5.Babel, M. S., Loof, R., Das Gupta, A.: Fingered preferential flow in unsaturated homogeneous coarse sands. Hydrolog. Sci. 401, 1–17 (1995)CrossRef
    6.Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13, 169–186 (1990)CrossRef
    7.Hassanizadeh, S.M., Gray, W.G.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25, 529–539 (1989)CrossRef
    8.Ataie-Ashtiani, B., Hassanizadeh, S.M., Celia, M.A.: Effects of heterogeneities on capillary pressure-saturation-relative permeability relationships. J. Contam. Hydrol. 56, 175–192 (2002)CrossRef
    9.Saffman, P.G., Taylor, G.: The penetration of a fluid into a medium or hele-shaw cell containing a more viscous liquid. Proc. Soc. London, Ser. A 245, 312–329 (1958)MathSciNet CrossRef MATH
    10.Payatakes, A.C., Dias, M. M.: Immiscible microdisplacement and ganglion dynamics in porous media. Rev. Chem. Eng. 2, 85–174 (1984)CrossRef
    11.Sahimi, M.: Flow phenomena in rocks: From continuum models to fractals, percolation, cellular automata and simulated annealing. Rev. Mod. Phys. 65, 1393–1534 (1993)CrossRef
    12.Vizika, O., Avraam, D.G., Payatakes, A.C.: On the role of the viscosity ratio during low-capillary-number forced imbibition in porous media. J. Colloid Interf. Sci. 165, 386–401 (1994)CrossRef
    13.Tzimas, G.C., Matsuura, T., Avraam, D.G., van der Brugghen, W., Constantinides, G.N., Payatakes, A.C.: The combined effect of the viscosity ratio and the wettability during forced imbibition through nonplanar porous media. J. Colloid Interf. Sci. 189, 27–36 (1997)CrossRef
    14.Zhong, H., Wang, X., Salama, A., Sun, A.: Quasistatic analysis on configuration of two-phase flow in Y-shaped tube. Comput. Math. Appl. 68(12, Part A), 1905–1914 (2014)MathSciNet CrossRef
    15.Zhang, T., Salama, A., Sun, S., El Amin, M.F.: Pore network modeling of drainage process in patterned porous media: a quasi-static study. J. Comp. Sci. 9, 64–69 (2015)CrossRef
    16.Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. (PDF) J. Comput. Phys. 79, 12–49 (1988)MathSciNet CrossRef MATH
    17.Enright, D., Fedkiw, R.P., Ferziger, J.H., Mitchell, I.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83–116 (2002)MathSciNet CrossRef MATH
    18.Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)CrossRef MATH
    19.Darwish, M., Moukalled, F.F.: Convective Schemes for Capturing Interfaces of Free-Surface Flows on Unstructured Grids. Numer. Heat Transf. Part B 49, 19–42 (2006)CrossRef
    20.Salama, A., Van Geel, P.J.: Flow and solute transport in saturated porous media: 1. the continuum hypothesis. J. Porous Media 11(4), 403–413 (2008)CrossRef
    21.Salama, A., Van Geel, P.J.: Flow and solute transport in saturated porous media: 2. violating the continuum hypothesis. J. Porous Media 11(5), 421–441 (2008)CrossRef
    22.El-Amin, M.F., Salama, A., Sun, S.: Solute Transport with Chemical Reaction in Single and Multi-Phase Flow in Porous Media. In: El Amin, M.F. (ed.) Mass Transfer in Multiphase Systems and its Applications (2011)
    23.Huh, C., Mason, S.G.: The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech. 81, 401–419 (1977)CrossRef
    24.Joanny, J.F., De Gennes, P.G.: A model for contact angle hysteresis. J. Chem. Phys. 81, 552–562 (1984)CrossRef
    25.Koplik, J., Banavar, J.R., Willemsen, J.F.: Molecular dynamics of poiseuille flow and moving contact lines. Phys. Rev. Lett. 60, 1282–1285 (1988)CrossRef
    26.Thompson, P.A., Robbins, M.O.: Simulations of contact-line motion: slip and the dynamic contact angle. Phys. Rev. Lett. 63, 766–769 (1989)CrossRef
    27.Thompson, P.A., Brinckerhoff, W.B., Robbins, M.O.: Microscopic studies of static and dynamic contact angles. J. Adhes. Sci. Tech. 7, 535–554 (1993)CrossRef
    28.Chen, H.Y., Jasnow, D., Vinals, J.: Interface and contact line motion in a two phase fluid under shear flow. Phys. Rev. Lett. 85, 1686–1689 (2000)CrossRef
    29.Jacqmin, D.: Contact-line dynamics of a diffuse fluid interface. J. Fluid. Mech. 402, 57–88 (2000)MathSciNet CrossRef MATH
    30.He, Q., Wang, X.-P.: Numerical study of the effect of Navier slip on the driven cavity flow; Z. Angew. Math. Mech. 89(10), 857–868 (2009)MathSciNet MATH
    31.Qian, T., Wang, X.P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible?ows,. Phys. Rev. E 68, 016306 (2003)CrossRef
    32.Qian, T., Wang, X.-P., Sheng, P.: Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Comm. Comput. Phys. 1(1), 1–52 (2006)MATH
    33.Qian, T., Wang, X. P., Sheng, P.: Molecular scale contact line hydrodynamics of immiscible?ows. Phys. Rev. E 68, 016306 (2003)CrossRef
    34.Qian, T., Wu, C., Lei, S.L., Wang, X.-P., Sheng, P.: Modeling and simulations for molecular scale hydrodynamics of moving contact line in immiscible two phase flows. J. Phys.: Condens. Matter 21, 464119 (2009)
    35.Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231(4), 1372–1386 (2012)MathSciNet CrossRef MATH
    36.Bao, K., Shi, Y., Sun, S., Wang, X.-P.: A finite element method for the numerical solution of the coupled cahn-hilliard and Navier-Stokes system for moving contact line problems. J. Comput. Phys. 231(24), 8083–8099 (2012)MathSciNet CrossRef MATH
    37.Xiaobing, F., Prohl, A.: Error analysis of a mixed finite element method for the cahn-hilliard equations. Numer. Math. 99(1), 47–84 (2004)MathSciNet CrossRef MATH
    38.Xiaobing, F.: Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two phase flows. SIAM J. Numer. Anal. 44(3), 1049–1072 (2006)MathSciNet CrossRef MATH
    39.Thompson, P.A., Robbins, M.O.: Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A 41, 6830 (1990)CrossRef
    40.Barrat, J.-L., Bocquet, L.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82, 4671 (1999)CrossRef
    41.Cieplak, M., Koplik, J., Banavar, J.R.: Boundary conditions at a fluid-solid interface. Phys. Rev. Lett. 86, 803 (2001)CrossRef
    42.Wang, X.-P., Qian, T., Sheng, P.: Moving contact line on chemically patterned surfaces. J. Fluid Mech. 605, 59–78 (2008)MathSciNet CrossRef MATH
    43.Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 165–19 (2004)MathSciNet CrossRef MATH
  • 作者单位:Kai Bao (1)
    Amgad Salama (2)
    Shuyu Sun (3)

    1. SINTEF, Department of Applied Mathematics, Forskningsveien 1, 0373, Oslo, Norway
    2. Reservoir Engineering Research Institute, 595 Lytton Ave., Palo Alto, CA, 94301, USA
    3. King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
  • 刊物类别:Engineering
  • 刊物主题:Physics
    Mechanics
    Automotive Engineering
  • 出版者:Springer Netherlands
  • ISSN:1573-1987
文摘
A set of numerical experiments has been conducted to study the effect of a precursor fluid layer on the motion of two phase system in a channel. This system is characterized by coupled Cahn-Hillard and Navier-Stokes system together with slip boundary conditions. The solution of the governing equation involves first the solution of Cahn-Hillard equation with semi-implicit and Mixed finite element discritization with a convex splitting scheme. The Navier-Stokes equations are then solved with a P2-P0 mixed finite element method. Three cases have been investigated; in the first the effect of different wettability scenarios with no precursor layer has been investigated. In the second scenario, the effect of the precursor layer for different wettability conditions is investigated. In the third case, the effect of the thickness of the precursor layer is investigated. It is found that, wettability conditions have considerable effect on the flow of the considered two-phase system. Furthermore the existence of the precursor layer has additional influence on the breakthrough of the phases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700