Lorenz Function of Bi2Te3/Sb2Te3 Superlattices
详细信息    查看全文
  • 作者:N.F. Hinsche (1)
    I. Mertig (1) (2)
    P. Zahn (3)
  • 关键词:Thermoelectric transport ; heterostructures ; DFT ; electronic structure
  • 刊名:Journal of Electronic Materials
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:42
  • 期:7
  • 页码:1406-1410
  • 全文大小:508KB
  • 参考文献:1. B. Sales, / Science 295, 1248 (2002). <a class="external" href="http://dx.doi.org/10.1126/science.1069895">CrossRefa>
    2. T. Tritt and M. Subramanian, / MRS Bull. 31, 188 (2006). <a class="external" href="http://dx.doi.org/10.1557/mrs2006.44">CrossRefa>
    3. H. B枚ttner, G. Chen, and R. Venkatasubramanian, / MRS Bull. 31, 211 (2006). <a class="external" href="http://dx.doi.org/10.1557/mrs2006.47">CrossRefa>
    4. G. Nolas, D. Morelli, and T. Tritt, / Ann. Rev. Mater. Sci. 29, 89 (1999). <a class="external" href="http://dx.doi.org/10.1146/annurev.matsci.29.1.89">CrossRefa>
    5. T. Borca-Tasciuc, / Superlattices and Microstruc. 28, 199 (2000). <a class="external" href="http://dx.doi.org/10.1006/spmi.2000.0900">CrossRefa>
    6. S. Lee, D. Cahill, and R. Venkatasubramanian, / Appl. Phys. Lett. 70, 2957 (1997). <a class="external" href="http://dx.doi.org/10.1063/1.118755">CrossRefa>
    7. G. Pernot, M. Stoffel, I. Savic, F. Pezzoli, P. Chen, G. Savelli, A. Jacquot, J. Schumann, U. Denker, and I. M枚nch, / Nat. Mater. 9, 491 (2010). <a class="external" href="http://dx.doi.org/10.1038/nmat2752">CrossRefa>
    8. R. Venkatasubramanian, / Phys. Rev. B 61, 3091 (2000). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.61.3091">CrossRefa>
    9. C. Uher and H. Goldsmid, / Phys. Status Solid B 65, 765 (1974). <a class="external" href="http://dx.doi.org/10.1002/pssb.2220650237">CrossRefa>
    10. G.S. Kumar, G. Prasad, R.O. Pohl, / J. Mater. Sci. 28, 4261 (1993). <a class="external" href="http://dx.doi.org/10.1007/BF01154931">CrossRefa>
    11. J. Sharp, E. Volckmann, and H. Goldsmid, / Phys. Status Solid A 185, 257 (2001). <a class="external" href="http://dx.doi.org/10.1002/1521-396X(200106)185:2<257::AID-PSSA257>3.0.CO;2-D">CrossRefa>
    12. R. Venkatasubramanian, E. Siivola, and T. Colpitts, / Nature 413, 597 (2001). <a class="external" href="http://dx.doi.org/10.1038/35098012">CrossRefa>
    13. O. Madelung, M. Schulz, and H. Weiss, eds., / Landolt-B枚rnstein New Series, group III/41C. (Berlin: Springer, 1998).
    14. N. Hinsche, B. Yavorsky, I. Mertig, and P. Zahn, / Phys. Rev. B 84, 165214 (2011). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.84.165214">CrossRefa>
    15. B.Y. Yavorsky, N. Hinsche, I. Mertig, P. Zahn, / Phys. Rev. B 84, 165208 (2011). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.84.165208">CrossRefa>
    16. J.M. Ziman, / Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon, 2001). <a class="external" href="http://dx.doi.org/10.1093/acprof:oso/9780198507796.001.0001">CrossRefa>
    17. I. Mertig, / Rep. Prog. Phys. 62, 237 (1999). <a class="external" href="http://dx.doi.org/10.1088/0034-4885/62/2/004">CrossRefa>
    18. M.S. Park, J.H. Song, J.E. Medvedeva, M. Kim, I.G. Kim, and A.J. Freeman, / Phys. Rev. B 81, 155211 (2010). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.81.155211">CrossRefa>
    19. L. Chaput, P. P茅cheur, J. Tobola, and H. Scherrer, / Phys. Rev. B72, 085126 (2005). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.72.085126">CrossRefa>
    20. B. Huang and M. Kaviany, / Phys. Rev. B 77, 125209 (2008). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.77.125209">CrossRefa>
    21. G. Mahan, and J. Sofo, / Proc. Natl. Acad. Sci. 93, 7436 (1996). <a class="external" href="http://dx.doi.org/10.1073/pnas.93.15.7436">CrossRefa>
    22. M. Gradhand, M. Czerner, D.V. Fedorov, P. Zahn, B.Y. Yavorsky, L. Szunyogh, and I. Mertig, / Phys. Rev. B 80, 224413 (2009). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.80.224413">CrossRefa>
    23. S.H. Vosko and L. Wilk, / Phys. Rev. B 22, 3812 (1980). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.22.3812">CrossRefa>
    24. P. Zahn, N. Hinsche, B. Yavorsky, and I. Mertig, / J. Phys.: Condens. Matter 23, 505504 (2011). <a class="external" href="http://dx.doi.org/10.1088/0953-8984/23/50/505504">CrossRefa>
    25. N.F. Hinsche, B.Yu. Yavorsky, M. Gradhand, M. Czerner, M. Winkler, J. K枚nig, H. B枚ttner, I. Mertig, and P. Zahn, / Phys. Rev. B 86, 085323 (2012).
    26. H. Goldsmid, Adv. Phys. 14, 273 (1965). <a class="external" href="http://dx.doi.org/10.1080/00018736500101061">CrossRefa>
    27. G. Nolas and H. Goldsmid, / Thermal Conductivity of Semiconductors, Chap. 1.4. (New York: Kluwer Academic, 2004).
    28. H. Goldsmid, / Proc. Phys. Soc. Sect. B 69, 203 (1956). <a class="external" href="http://dx.doi.org/10.1088/0370-1301/69/2/310">CrossRefa>
    29. P.J. Price, / Proc. Phys. Soc. Sect. B 69, 851 (1956). <a class="external" href="http://dx.doi.org/10.1088/0370-1301/69/8/117">CrossRefa>
    30. H. Beyer, J. Nurnus, H. B枚ttner, A. Lambrecht, E. Wagner, and G. Bauer, / Phys. E: Low-dimens. Syst. Nanostruc. 13, 965 (2002) <a class="external" href="http://dx.doi.org/10.1016/S1386-9477(02)00246-1">CrossRefa>
    31. Z. Bian, M. Zebarjadi, R. Singh, Y. Ezzahri, A. Shakouri, G. Zeng, J.H. Bahk, J. Bowers, J. Zide, and A. Gossard, Phys. Rev. B 76, 205311 (2007). <a class="external" href="http://dx.doi.org/10.1103/PhysRevB.76.205311">CrossRefa>
    32. N.F. Hinsche, I. Mertig, and P. Zahn, / J. Phys.: Condens. Matter 24, 275501 (2012). <a class="external" href="http://dx.doi.org/10.1088/0953-8984/24/27/275501">CrossRefa>
  • 作者单位:N.F. Hinsche (1)
    I. Mertig (1) (2)
    P. Zahn (3)

    1. Institut f眉r Physik, Martin-Luther-Universit盲t Halle-Wittenberg, 06099, Halle, Germany
    2. Max-Planck-Institut f眉r Mikrostrukturphysik, Weinberg 2, 06120, Halle, Germany
    3. Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 51 01 19, 01314, Dresden, Germany
  • ISSN:1543-186X
文摘
Combining first-principles density functional theory and semiclassical Boltzmann transport, the anisotropic Lorenz function was studied for thermoelectric Bi2Te3/Sb2Te3 superlattices and their bulk constituents. It was found that, already for the bulk materials Bi2Te3 and Sb2Te3, the Lorenz function is not a clear function of charge carrier concentration and temperature. For electron-doped Bi2Te3/Sb2Te3 superlattices, large oscillatory deviations of the Lorenz function from the metallic limit were found even at high charge carrier concentrations. The latter can be referred to quantum well effects, which occur at distinct superlattice periods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700