Heat Shock Protein 27 Expression is Inversely Correlated with Atrophic Gastritis and Intraepithelial Neoplasia
详细信息    查看全文
  • 作者:Yoshiaki Nagata (1)
    Masatoshi Kudo (1)
    Tomoyuki Nagai (1)
    Tomohiro Watanabe (2)
    Masanori Kawasaki (1)
    Yutaka Asakuma (1)
    Satoru Hagiwara (1)
    Naoshi Nishida (1)
    Shigenaga Matsui (1)
    Hiroshi Kashida (1)
    Toshiharu Sakurai (1)
  • 关键词:Gastric cancer ; HSP27 ; ROS ; Inflammation ; Atrophic gastritis ; EMT ; Stem cell
  • 刊名:Digestive Diseases and Sciences
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:58
  • 期:2
  • 页码:381-388
  • 全文大小:472KB
  • 参考文献:1. Pinheiro PS, Tyczyński JE, Bray F, Amado J, Matos E, Parkin DM. Cancer incidence and mortality in Portugal. / Eur J Cancer. 2003;39:2507-520. CrossRef
    2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM. GLOBOCAN 2008 v1.2, cancer incidence and mortality worldwide: IARC CancerBase No. 10. Lyon, France: International Agency for Research on Cancer; 2010.
    3. Hartgrink HH, van de Velde CJ. Status of extended lymph node dissection: locoregional control is the only way to survive gastric cancer. / J Surg Oncol. 2005;90:153-65. CrossRef
    4. Novotny AR, Schuhmacher C, Busch R, Kattan MW, Brennan MF, Siewert JR. Predicting individual survival after gastric cancer resection: validation of a US-derived nomogram at a single high-volume center in Europe. / Ann Surg. 2006;243:74-1. CrossRef
    5. Balkwill F, Coussens LM. Cancer: an inflammatory link. / Nature. 2004;431:540-50. CrossRef
    6. Allen RG, Tresini M. Oxidative stress and gene regulation. / Free Radic Biol Med. 2000;28:463-99. CrossRef
    7. Toyokuni S. Novel aspects of oxidative stress-associated carcinogenesis. / Antioxid Redox Signal. 2006;8:1373-377. CrossRef
    8. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. / Nature. 2002;418:191-95. CrossRef
    9. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. / Nat Med. 2007;13:851-56. CrossRef
    10. Sakurai T, He G, Matsuzawa A, et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. / Cancer Cell. 2008;14:156-65. CrossRef
    11. Vakkila J, Lotze MT. Inflammation and necrosis promote tumor growth. / Nat Rev Immunol. 2004;4:641-48. CrossRef
    12. Sakurai T, Maeda S, Chang L, Karin M. Loss of hepatic NF-κB activity enhances chemical hepatocarcinogenesis through sustained c-Jun N-terminal kinase 1 activation. / Proc Natl Acad Sci USA. 2006;103:10544-0551. CrossRef
    13. Shibata W, Takaishi S, Muthupalani S, et al. Conditional deletion of IkappaB-kinase-beta accelerates Helicobacter-dependent gastric apoptosis, proliferation, and preneoplasia. / Gastroenterology. 2010;138:1022-034. CrossRef
    14. Garrido C, Brunet M, Didelot C, Zermati Y, Schmitt E, Kroemer G. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. / Cell Cycle. 2006;5:2592-601. CrossRef
    15. Sankhala KK, Mita MM, Mita AC, Takimoto CH. Heat shock proteins: a potential anticancer target. / Curr Drug Targets. 2011;12:2001-008. CrossRef
    16. Huang Q, Ye J, Huang Q, et al. Heat shock protein 27 is over-expressed in tumor tissues and increased in sera of patients with gastric adenocarcinoma. / Clin Chem Lab Med. 2010;48:263-69. CrossRef
    17. King KL, Li AF, Chau GY, et al. Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival. / Cancer. 2000;88:2464-470. CrossRef
    18. Kapranos N, Kominea A, Konstantinopoulos PA, et al. Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance. / J Cancer Res Clin Oncol. 2002;128:426-32. CrossRef
    19. Tweedle EM, Khattak I, Ang CW, et al. Low molecular weight heat shock protein HSP27 is a prognostic indicator in rectal cancer but not colon cancer. / Gut. 2010;59:1501-510. CrossRef
    20. Giaginis C, Daskalopoulou SS, Vgenopoulou S, Sfiniadakis I, Kouraklis G, Theocharis SE. Heat Shock Protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival. / BMC Gastroenterol. 2009;9:14. CrossRef
    21. Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. / Oncogene. 2006;25:2987-998. CrossRef
    22. Tak H, Jang E, Kim SB, et al. 14--3epsilon inhibits MK5-mediated cell migration by disrupting F-actin polymerization. / Cell Signal. 2007;19:2379-387. CrossRef
    23. Bruey JM, Ducasse C, Bonniaud P, et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. / Nat Cell Biol. 2000;2:645-52. CrossRef
    24. Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C. Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. / J Leukoc Biol. 2007;81:15-7. CrossRef
    25. Ebert MP, Sch?fer C, Chen J, et al. Protective role of heat shock protein 27 in gastric mucosal injury. / J Pathol. 2005;207:177-84. CrossRef
    26. Ushijima T, Sasako M. Focus on gastric cancer. / Cancer Cell. 2004;5:121-25. CrossRef
    27. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. / Cancer Cell. 2008;14:408-19. CrossRef
    28. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. / Nature. 2001;414:105-11. CrossRef
    29. Matsuoka J, Yashiro M, Sakurai K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. / J Surg Res. 2012;174:130-35. CrossRef
    30. Pandey P, Farber R, Nakazawa A, et al. Hsp27 functions as a negative regulator of cytochrome c-dependent activation of procaspase-3. / Oncogene. 2000;19:1975-981. CrossRef
    31. Savagner P. The epithelial–mesenchymal transition (EMT) phenomenon. / Ann Oncol. 2010;21:vii89–vii92. CrossRef
    32. Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. / Cell Death Differ. 2007;14:1237-243. CrossRef
    33. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. / Trends Biochem Sci. 2007;32:37-3. CrossRef
    34. Marshal BJ. Campylobacter pyloridis and gastritis. / J Infect Dis. 1986;153:650-57. CrossRef
    35. Genta RM, Graham DY. Intestinal metaplasia, not atrophy or achlorhydria, creates a hostile environment for / Helicobacter pylori. / Scand J Gastroenterol. 1993;28:924-28. CrossRef
    36. Parsonnet J, Friedman GD, Vandersteen DP, et al. / Helicobacter pylori infection and the risk of gastric carcinoma. / N Engl J Med. 1991;325:1127-131. CrossRef
    37. Peek RM Jr, Blaser MJ. / Helicobacter pylori and gastrointestinal tract adenocarcinomas. / Nat Rev Cancer. 2002;2:28-7. CrossRef
    38. Panani AD. Cytogenetic and molecular aspects of gastric cancer: clinical implications. / Cancer Lett. 2008;266:99-15. CrossRef
    39. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. / Cell. 2009;139:871-90. CrossRef
  • 作者单位:Yoshiaki Nagata (1)
    Masatoshi Kudo (1)
    Tomoyuki Nagai (1)
    Tomohiro Watanabe (2)
    Masanori Kawasaki (1)
    Yutaka Asakuma (1)
    Satoru Hagiwara (1)
    Naoshi Nishida (1)
    Shigenaga Matsui (1)
    Hiroshi Kashida (1)
    Toshiharu Sakurai (1)

    1. Department of Gastroenterology and Hepatology, Faculty of Medicine, Kinki University, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
    2. Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
  • ISSN:1573-2568
文摘
Background Intestinal-type gastric carcinomas progress through several sequential steps, including atrophic gastritis, intestinal metaplasia, dysplasia, and cancer. Aim We investigated heat shock protein 27 (HSP27) expression in gastric neoplasia and background gastric mucosa to assess its involvement in gastric carcinogenesis. Methods We used real-time quantitative polymerase chain reaction to examine HSP27 expression in gastric neoplasias and background gastric mucosae of 30 patients with intraepithelial neoplasias and in gastric mucosae of 30 patients without gastric neoplasia. Immunohistochemical staining was performed on 30 advanced gastric cancer tissues. Results HSP27 expression was negatively associated with atrophic gastritis. HSP27 expression in the background gastric mucosa of neoplasia-bearing patients was significantly lower than in the mucosa of those without gastric neoplasia. In tumor necrosis factor α-treated gastric cancer cells, HSP27 knockdown increased cell death and accumulation of the reactive oxygen species that link inflammation to cancer. Poorly differentiated tumors most frequently had high HSP27 levels. Dedifferentiation of cancer cells is associated with an epithelial–mesenchymal transition (EMT) signaling pathway. In gastric cancer MKN-1 cells, HSP27 knockdown upregulated E-cadherin and downregulated vimentin and smooth muscle actin, but this did not occur in MKN-74 cells. Conclusion HSP27 expression in gastric mucosae is inversely correlated with intraepithelial neoplasia, a probable precursor to gastric cancer, and HSP27 expression in cancer is positively correlated with poor differentiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700