Suppression of nanosilica particle-induced inflammation by surface modification of the particles
详细信息    查看全文
  • 作者:Tomohiro Morishige (1)
    Yasuo Yoshioka (2) (3)
    Hiroshi Inakura (1)
    Aya Tanabe (1)
    Shogo Narimatsu (1)
    Xinglei Yao (1) (4)
    Youko Monobe (5)
    Takayoshi Imazawa (5)
    Shin-ichi Tsunoda (2) (3)
    Yasuo Tsutsumi (2) (3) (6)
    Yohei Mukai (1)
    Naoki Okada (1)
    Shinsaku Nakagawa (1) (2)
  • 关键词:Inflammation ; Macrophage ; Nanoparticle ; Silica ; Surface modification
  • 刊名:Archives of Toxicology
  • 出版年:2012
  • 出版时间:August 2012
  • 年:2012
  • 卷:86
  • 期:8
  • 页码:1297-1307
  • 全文大小:570KB
  • 参考文献:1. Albrecht C, Schins RP, Hohr D, Becker A, Shi T, Knaapen AM et al (2004) Inflammatory time course after quartz instillation: role of tumor necrosis factor-alpha and particle surface. Am J Respir Cell Mol Biol 31:292-01 CrossRef
    2. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N et al (2005) Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci USA 102:11539-1544 CrossRef
    3. Bottini M, D’Annibale F, Magrini A, Cerignoli F, Arimura Y, Dawson MI et al (2007) Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes. Int J Nanomedicine 2:227-33
    4. Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25:6731-748 CrossRef
    5. Busuttil SJ, Ploplis VA, Castellino FJ, Tang L, Eaton JW, Plow EF (2004) A central role for plasminogen in the inflammatory response to biomaterials. J Thromb Haemost 2:1798-805 CrossRef
    6. Chen Z, Meng H, Xing G, Yuan H, Zhao F, Liu R et al (2008) Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 42:8985-992 CrossRef
    7. Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X et al (2010) Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141:320-27 CrossRef
    8. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674-77 CrossRef
    9. He X, Nie H, Wang K, Tan W, Wu X, Zhang P (2008) In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem 80:9597-603 CrossRef
    10. Hirano S, Kanno S, Furuyama A (2008) Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232:244-51 CrossRef
    11. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549-3554 CrossRef
    12. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847-56 CrossRef
    13. Huaux F (2007) New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol 7:168-73 CrossRef
    14. Iyer R, Hamilton RF, Li L, Holian A (1996) Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol Appl Pharmacol 141:84-2
    15. Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6:391-03 CrossRef
    16. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 1:313-16 CrossRef
    17. Ke Q, Li J, Ding J, Ding M, Wang L, Liu B et al (2006) Essential role of ROS-mediated NFAT activation in TNF-alpha induction by crystalline silica exposure. Am J Physiol Lung Cell Mol Physiol 291:L257–L264 CrossRef
    18. Kops SK, Ratzlaff RE, Meade R, Iverson GM, Askenase PW (1986) Interaction of antigen-specific T cell factors with unique “receptors-on the surface of mast cells: demonstration in vitro by an indirect rosetting technique. J Immunol 136:4515-524
    19. Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA (2010) Serum heat inactivation affects protein corona composition and nanoparticle uptake. Biomaterials 31:9511-518 CrossRef
    20. Li X, Hu Y, Jin Z, Jiang H, Wen J (2009) Silica-induced TNF-alpha and TGF-beta1 expression in RAW264.7 cells are dependent on Src-ERK/AP-1 pathways. Toxicol Mech Methods 19:51-8 CrossRef
    21. Limmon GV, Arredouani M, McCann KL, Corn Minor RA, Kobzik L, Imani F (2008) Scavenger receptor class-A is a novel cell surface receptor for double-stranded RNA. Faseb J 22:159-67 CrossRef
    22. Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials 31:8198-209 CrossRef
    23. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265-4270 CrossRef
    24. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436-44 CrossRef
    25. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451-56 CrossRef
    26. Morel F, Doussiere J, Vignais PV (1991) The superoxide-generating oxidase of phagocytic cells. Physiological, molecular and pathological aspects. Eur J Biochem 201:523-46 CrossRef
    27. Morishige T, Yoshioka Y, Inakura H, Tanabe A, Yao X, Narimatsu S et al (2010a) The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1beta production, ROS production and endosomal rupture. Biomaterials 31:6833-842 CrossRef
    28. Morishige T, Yoshioka Y, Tanabe A, Yao X, Tsunoda S, Tsutsumi Y et al (2010b) Titanium dioxide induces different levels of IL-1beta production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem Biophys Res Commun 392:160-65 CrossRef
    29. Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666-680
    30. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622-27 CrossRef
    31. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423-28 CrossRef
    32. Roy I, Ohulchanskyy TY, Bharali DJ, Pudavar HE, Mistretta RA, Kaur N et al (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 102:279-84 CrossRef
    33. Sager TM, Kommineni C, Castranova V (2008) Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol 5:17 CrossRef
    34. Savici D, He B, Geist LJ, Monick MM, Hunninghake GW (1994) Silica increases tumor necrosis factor (TNF) production, in part, by upregulating the TNF promoter. Exp Lung Res 20:613-25 CrossRef
    35. Shiryaev A, Moens U (2010) Mitogen-activated protein kinase p38 and MK2, MK3 and MK5: menage a trois or menage a quatre? Cell Signal 22:1185-192 CrossRef
    36. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N et al (2008) Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33:105-16 CrossRef
    37. Thakur SA, Hamilton R Jr, Pikkarainen T, Holian A (2009) Differential binding of inorganic particles to MARCO. Toxicol Sci 107:238-46 CrossRef
    38. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028
    39. Verraedt E, Pendela M, Adams E, Hoogmartens J, Martens JA (2009) Controlled release of chlorhexidine from amorphous microporous silica. J Control Release 142:47-2 CrossRef
    40. Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD et al (2009) Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 107:553-69 CrossRef
    41. Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M et al (2010) Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 33:276-80 CrossRef
    42. Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M et al (2011) Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol 6:321-28 CrossRef
    43. Yang X, Liu J, He H, Zhou L, Gong C, Wang X et al (2010) SiO2 nanoparticles induce cytotoxicity and protein expression alteration in HaCaT cells. Part Fibre Toxicol 7:1 CrossRef
  • 作者单位:Tomohiro Morishige (1)
    Yasuo Yoshioka (2) (3)
    Hiroshi Inakura (1)
    Aya Tanabe (1)
    Shogo Narimatsu (1)
    Xinglei Yao (1) (4)
    Youko Monobe (5)
    Takayoshi Imazawa (5)
    Shin-ichi Tsunoda (2) (3)
    Yasuo Tsutsumi (2) (3) (6)
    Yohei Mukai (1)
    Naoki Okada (1)
    Shinsaku Nakagawa (1) (2)

    1. Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
    2. The Center for Advanced Medical Engineering and Informatics, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
    3. Laboratory of Biopharmaceutical Research, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
    4. Institute of Pharmaceutics, Zhejiang University, 388 Yuhangtang Road, Hangzhou, 310058, China
    5. Laboratory of Common Apparatus, Division of Biomedical Research, National Institute of Biomedical Innovation, Osaka, 567-0085, Japan
    6. Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
  • ISSN:1432-0738
文摘
It has gradually become evident that nanomaterials, which are widely used in cosmetics, foods, and medicinal products, could induce substantial inflammation. However, the roles played by the physical characteristics of nanomaterials in inflammatory responses have not been elucidated. Here, we examined how particle size and surface modification influenced the inflammatory effects of nanosilica particles, and we investigated the mechanisms by which the particles induced inflammation. We compared the inflammatory effects of silica particles with diameters of 30-,000 nm in vitro and in vivo. In macrophages in vitro, 30- and 70-nm nanosilica particles (nSP30 and nSP70) induced higher production of tumor necrosis factor-α (TNFα) than did larger particles. In addition, intraperitoneal injection of nSP30 and nSP70 induced stronger inflammatory responses involving cytokine production than did larger particles in mice. nSP70-induced TNFα production in macrophage depended on the production of reactive oxygen species and the activation of mitogen-activated protein kinases (MAPKs). Furthermore, nSP70-induced inflammatory responses were dramatically suppressed by surface modification of the particles with carboxyl groups in vitro and in vivo; the mechanism of the suppression involved reduction in MAPK activation. These results provide basic information that will be useful for the development of safe nanomaterials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700