Multivariate analysis of trace elements in shallow groundwater in Fuchu in western Tokyo Metropolis, Japan
详细信息    查看全文
  • 作者:Dang Quoc Thuyet ; Hirotaka Saito ; Takeshi Saito…
  • 关键词:Multivariate analysis ; Principal component analysis ; Cluster analysis ; Trace elements ; Groundwater quality ; Ground source heat pump (GSHP)
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:75
  • 期:7
  • 全文大小:1,503 KB
  • 参考文献:Akai J, Anawar HM (2013) Mineralogical approach in elucidation of contamination mechanism for toxic trace elements in the environment: Special reference to arsenic contamination in groundwater. Physics Chem Earth Parts A/B/C 58–60:2–12. doi:10.​1016/​j.​pce.​2013.​04.​011 CrossRef
    Anawar HM, Akai J, Komaki K, Terao H, Yoshioka T, Ishizuka T, Safiullah S, Kato K (2003) Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J Geochem Explor 77:109–131. doi:10.​1016/​S0375-6742(02)00273-X CrossRef
    Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. 2 Edn., Taylor & Francis
    Ayotte JD, Gronberg JAM, Apodaca LE (2011) Trace elements and Radon in groundwater across the United States, 1992–2003. In: U.S. Geological Survey Scientific Investigations Report 2011–5059, pp 115
    Chang AC, Warneke JE, Page AL, Lund LJ (1984) Accumulation of heavy metals in sewage sludge-treated soils. J Environ Qual 13:87–91. doi:10.​2134/​jeq1984.​0047242500130001​0016x CrossRef
    Chen KP, Jiao JJ, Huang JM, Huang RQ (2007) Multivariate statistical evaluation of trace elements in groundwater in a coastal area in Shenzhen. China. Environ Pollut 147:771–780. doi:10.​1016/​j.​envpol.​2006.​09.​002 CrossRef
    Cruz JV, Silva MO (2000) Groundwater salinization in Pico Island (Azores, Portugal): origin and mechanisms. Environ Geol 39:1181–1189CrossRef
    Davis SN (1964) Silica in streams and ground water. Am J Sci 262:870–891. doi:10.​2475/​ajs.​262.​7.​870 CrossRef
    Endo T (1992) Confined groundwater system in Tokyo. Environ Geol Water Sci 20:21–34. doi:10.​1007/​BF01736107 CrossRef
    Endo T, Ishii M (1984) Hydrogeology and subjects caused by recovering of groundwater level in Tokyo. J Jpn Soc Eng Geol 25:111–120. doi:10.​5110/​jjseg.​25.​111 CrossRef
    Farnham IM, Johannesson KH, Singh AK, Hodge VF, Stetzenbach KJ (2003) Factor analytical approaches for evaluating groundwater trace element chemistry data. Anal Chim Acta 490:123–138. doi:10.​1016/​S0003-2670(03)00350-7 CrossRef
    Graves B (1987) Radon in Ground Water. CRC Press (Lewis Publishers)
    Hem JD (1989) Study and interpretation of the chemical characteristics of natural water, U.S. Geological Survey, Water Supply Paper 2254. pp 263
    Hinton PR (2004) SPSS explained. Routledge
    Hogan JF, Blum JD (2003) Boron and lithium isotopes as groundwater tracers: a study at the Fresh Kills Landfill, Staten Island, New York, USA. Appl Geochem 18:615–627. doi:10.​1016/​S0883-2927(02)00153-1 CrossRef
    Imaizumi M, Komae T, Nihira S (2000) Evaluation of recharge mechanism of confined groundwater using long term tritium concentration records in the Metropolis of Tokyo. J Jpn Soc Eng Geol 41:87–102CrossRef
    JMOE (2003) Environmental Quality Standards for Groundwater Pollution. Ministry of the Environment Government of Japan (JMOE)
    Jolliffe IT (2002) Principal component analysis. Springer
    Kim J-H, Kim R-H, Lee J, Cheong T-J, Yum B-W, Chang H-W (2005) Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea. HyPr 19:1261–1276. doi:10.​1002/​hyp.​5565
    Komatsu T (2012) Thermal disturbances in the subsurface environment and groundwater conservation. In: JSPS Workshop on Water and Urban Environment, pp 1–40
    Koonce JE, Yu Z, Farnham IM, Stetzenbach KJ (2006) Geochemical interpretation of groundwater flow in the southern Great Basin. Geosphere 2:88–101. doi:10.​1130/​Ges00031.​1 CrossRef
    Kuroda K, Fukushi T (2008) Groundwater contamination in urban areas. In: Takizawa S (ed) Groundwater management in Asian Cities. Springer, Japan, pp 125–149
    Kuroda K, Murakami M, Oguma K, Muramatsu Y, Takada H, Takizawa S (2011) Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environ Sci Technol 46:1455–1464. doi:10.​1021/​es202059g CrossRef
    Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall
    Lee J, Ko K-S, Kim J-M, Chang H-W (2008) Multivariate statistical analysis of underground gas storage caverns on groundwater chemistry in Korea. HyPr 22:3410–3417. doi:10.​1002/​hyp.​6921
    Luu TTG, Sthiannopkao S, Kim K-W (2009) Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environ Int 35:455–460. doi:10.​1016/​j.​envint.​2008.​07.​013 CrossRef
    Mason RP (2013) Trace metals in aquatic systems. Wiley-Blackwell
    Murakami M, Kuroda K, Sato N, Fukushi T, Takizawa S, Takada H (2009) Groundwater pollution by perfluorinated surfactants in Tokyo. Environ Sci Technol 43:3480–3486. doi:10.​1021/​es803556w CrossRef
    Négrel P, Millot R, Brenot A, Bertin C (2010) Lithium isotopes as tracers of groundwater circulation in a peat land. Chem Geol 276:119–127. doi:10.​1016/​j.​chemgeo.​2010.​06.​008 CrossRef
    Nga T (2008) Arsenic contamination in Hanoi City, Vietnam. In: Groundwater Management in Asian Cities, Takizawa S (ed.) Springer Japan, pp 273–299
    Phan K, Phan S, Huoy L, Suy B, Wong MH, Hashim JH, Mohamed Yasin MS, Aljunid SM, Sthiannopkao S, Kim K-W (2013) Assessing mixed trace elements in groundwater and their health risk of residents living in the Mekong River basin of Cambodia. Environ Pollut 182:111–119. doi:10.​1016/​j.​envpol.​2013.​07.​002 CrossRef
    Ramesh R (1999) Groundwater quality management: polution perspectives. In: Ellis JB (ed) Impacts of urban growth on surface water and groundwater quality. IAHS publication, pp 47–55
    Saito T, Hamamoto S, Mon EE, Takemura T, Saito H, Komatsu T, Moldrup P (2014) Thermal properties of boring core samples from the Kanto area, Japan: Development of predictive models for thermal conductivity and diffusivity. Soils Found 54:116–125. doi:10.​1016/​j.​sandf.​2014.​02.​004 CrossRef
    Shand P, Edmunds WM (2008) The baseline inorganic chemistry of European groundwater. In: Edmunds WM, Shand P (eds) Natural groundwater quality. Blackwell Publishing, pp: 22-58
    Shyu GS, Cheng BY, Chiang CT, Yao PH, Chang TK (2011) Applying factor analysis combined with kriging and information entropy theory for mapping and evaluating the stability of groundwater quality variation in Taiwan. Int J Environ Res Public Health 8:1084–1109. doi:10.​3390/​ijerph8041084 CrossRef
    Stetzenbach KJ, Farnham IM, Hodge VF, Johannesson KH (1999) Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer. HyPr 13:2655–2673. doi:10.​1002/​(SICI)1099-1085(19991215)13:​17<2655:​AID-HYP840>3.​0.​CO;2-4
    Takei K (1975) On the pebbles of Igneous Rocks, Metamorphic Rocks and Acidic Tuffs in the Cretaceous Conglomerate of the Sanchu Graben, Kanto Mountains. J Geol Soc Jpn 81:247–254CrossRef
    Tanji K, Valoppi L (1989) Groundwater contamination by trace elements. Agric. Ecosyst Environ 26:229–274. doi:10.​1016/​0167-8809(89)90015-7 CrossRef
    Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244. doi:10.​1080/​01621459.​1963.​10500845 CrossRef
    Weiner ER (2013) Applications of environmental aquatic chemistry : A practical guide. CRC Press/Taylor & Francis Group
    White DE, Hem JD, Waring GA (1963) Chemical composition of subsurface waters. In: Data of Geochemistry, Sixth edn, p 67
    WHO (2011) Guidelines for drinking-water quality, fourth edition. World Health Organization
    Wilson N (1995) Soil Water and Ground Water Sampling. CRC Press
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37–52. doi:10.​1016/​0169-7439(87)80084-9 CrossRef
  • 作者单位:Dang Quoc Thuyet (1) (2)
    Hirotaka Saito (2)
    Takeshi Saito (3)
    Shigeoki Moritani (4)
    Yuji Kohgo (2)
    Toshiko Komatsu (3)

    1. Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
    2. Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
    3. Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
    4. Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
A rapid increase in the use of ground source heat pump (GSHP) systems for heating and cooling of buildings potentially threatens to harm shallow groundwater quality. As a necessary preliminary step toward evaluating GSHP impact on shallow groundwater quality, this study used multivariate statistical analyses to investigate characteristics of trace elements in groundwater in Fuchu city in western Tokyo Metropolis. Water samples were collected twice a month from two aquifers at 30- and 45-m depths using four observation wells for more than a year. Concentrations of 14 trace elements (Li, B, Al, Cr, Mn, Fe, Ni, Cu, As, Se, Sr, Cd, Sb, and Pb) and Si as well as oxidation–reduction potential (ORP), dissolved oxygen (DO), electrical conductivity (EC), and pH were measured. All elements were under the environmental water quality criteria issued by the Japanese Ministry of the Environment. No clear seasonal trends were observed in the concentrations of 15 elements in groundwater. Principal component analyses showed the element properties were well characterized by three principal components (PC). PC1, which represents the more mobile trace elements in the groundwater, consisted of Li, B, Mn, Fe, As, and Si. PC2 included Al, Ni, Cd, and Sb, and represents ORP-insensitive properties. PC3 consisted of Pb, Cu, and Se, which are less mobile in groundwater. Samples collected from the same aquifer had high similarity in distribution and variation of the trace elements. This study proposes a useful statistical platform for assessing future effects of GSHP systems on shallow groundwater quality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700