Prediction of Epitope-Based Peptides for Vaccine Development from Coat Proteins GP2 and VP24 of Ebola Virus Using Immunoinformatics
详细信息    查看全文
  • 作者:Pratik Narain Srivastava ; Richa Jain…
  • 关键词:Ebola virus ; Glycoprotein ; Viral coat protein ; Antigenic peptides ; Vaccine
  • 刊名:International Journal of Peptide Research and Therapeutics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:22
  • 期:1
  • 页码:119-133
  • 全文大小:3,113 KB
  • 参考文献:Amarasinghe GK, Xu W, Edwards MR, Borek DM, Mittal A (2014) Ebola virus VP24 targets a unique NLS binding site on karyopherin alpha 5 to selectively compete with nuclear import of phosphorylated STAT1. Cell Host Microbe 16(2):187–200. doi:10.​1016/​j.​chom.​2014.​07.​008 PubMedCentral CrossRef PubMed
    Ascenzi P, Bocedi A, Heptonstall J, Capobianchi MR, Di Caro A, Mastrangelo E, Bolognesi M, Ippolito G (2008) Ebolavirus and Marburgvirus: insight the Filoviridae family. Mol Asp Med 29(3):151–185. doi:10.​1016/​j.​mam.​2007.​09.​005 CrossRef
    De Groot AS, Berzofsky JA (2005) From genome to vaccine—new immnoinformatics tools for vaccine design. Methods 34(4):425–428. doi:10.​1016/​j.​ymeth.​2004.​06.​004 CrossRef
    Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8(1):4. doi:10.​1186/​1471-2105-8-4 CrossRef
    Doytchinova IA, Taylor P, Flower DR (2003) Proteomics in vaccinology and immunobiology: an informatics perspective of the immunone. J Biomed Biotechnol 5:267–290. doi:10.​1155/​s111072430320923​2 CrossRef
    Drazen JM, Kanapathipillai R, Campion EW, Rubin EJ, Hammer SM, Morrissey S, Baden LR (2014) Ebola and quarantine. N Engl J Med 371(21):2029–2030. doi:10.​1056/​NEJMe1413139 CrossRef PubMed
    Feldmann H, Jones S, Klenk HD, Schnittler HJ (2003) Ebola virus: from discovery to vaccine. Nat Rev Immunol 3(8):677–685. doi:10.​1038/​nri1154 CrossRef PubMed
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512. doi:10.​1126/​science.​7542800 CrossRef PubMed
    Funk DJ, Kumar A (2015) Ebola virus disease: an update for anesthesiologists and intensivists. Can J Anaesth 62(1):80–91. doi:10.​1007/​s12630-014-0257-z PubMedCentral CrossRef PubMed
    Gededzha MP, Mphahlele MJ, Selabe SG (2014) Prediction of T-cell epitopes of hepatitis C virus genotype 5a. Virol J 11(1):187. doi:10.​1186/​1743-422x-11-187 PubMedCentral CrossRef PubMed
    Geisbert TW, Daddario-DiCaprio KM, Lewis MG, Geisbert JB, Grolla A et al (2008) Vesicular stomatitis virus-based Ebola vaccine is well-tolerated and protects immunocompromised nonhuman primates. PLoS Pathog 4(11):e1000225. doi:10.​1371/​journal.​ppat.​1000225 PubMedCentral CrossRef PubMed
    Geisbert TW et al (2010) Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375(9729):1896–1905. doi:10.​1016/​S0140-6736(10)60357-1 CrossRef PubMed
    Han Z, Boshra H, Sunyer JO, Zwiers SH, Paragas J, Harty RN (2003) Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J Virol 77(3):1793–1800. doi:10.​1128/​JVI.​77.​3.​1793-1800.​2003 PubMedCentral CrossRef PubMed
    Heringa J (1999) Two strategies for sequence comparison: profile- preprocessed and secondary structure-induced multiple alignment. Comput Chem 23:341–364. doi:10.​1016/​s0097-8485(99)00012-1 CrossRef PubMed
    Heringa J (2002) Local weighting schemes for protein multiple sequence alignment. Comput Chem 26:459–477. doi:10.​1016/​S0097-8485(02)00008-6 CrossRef PubMed
    Huang Y, Xu L, Sun Y, Nabel GJ (2002) The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 10:307–316. doi:10.​1016/​S1097-2765(02)00588-9 CrossRef PubMed
    Iversen PL, Warren TK, Wells JB et al (2012) Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 4(11):2806–2830. doi:10.​3390/​v4112806 PubMedCentral CrossRef PubMed
    Jones SM, Feldmann H, Ströher U, Geisbert JB, Fernando L, Grolla A, Klenk H, Sullivan NJ, Volchkov VE, Fritz EA, Daddario KM, Hensley LE, Jahrling PB, Geisbert TW (2005) Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 11:786–790. doi:10.​1038/​nm1258 CrossRef PubMed
    Keller MA, Stiehm ER (2000) Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 13(4):602–614. doi:10.​1128/​CMR.​13.​4.​602-614.​2000 PubMedCentral CrossRef PubMed
    Larsen MV, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8(1):424. doi:10.​1186/​1471-2105-8-424 PubMedCentral CrossRef PubMed
    Lee JE, Saphire EO (2009) Ebolavirus glycoprotein structure and mechanism of entry. Futur Virol 4(6):621–635. doi:10.​2217/​fvl.​09.​56 CrossRef
    Lee JE, Fusco ML, Oswald WB, Hessell AJ, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182. doi:10.​1038/​nature07082 PubMedCentral CrossRef PubMed
    Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez J, Swanepoel R (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575–576. doi:10.​1038/​438575a CrossRef PubMed
    Malashkevich VN, Schneider BJ, Mcnally ML, Milhollen MA, Pang JX, Kim PS (1999) Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-Å resolution. Proc Natl Acad Sci 96:2662–2667. doi:10.​1073/​pnas.​96.​6.​2662 PubMedCentral CrossRef PubMed
    Maupetit J, Derreumaux P, Tufféry P (2009) PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Res 37:W498–W508. doi:10.​1093/​nar/​gkp323 PubMedCentral CrossRef PubMed
    Maupetit J, Derreumaux P, Tuffery P (2010) A fast and accurate method for large-scale de novo peptide structure prediction. J Comput Chem 31(4):726–738. doi:10.​1002/​jcc.​21365 PubMed
    Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, Brunak S, Lund O (2003) Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 12:1007–1017. doi:10.​1110/​ps.​0239403 PubMedCentral CrossRef PubMed
    Nielsen M, Lundegaard C, Brunak S, Lund O, Kesmir C (2005) The role of the proteasome in generating cytotoxic T cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Imunogenetics 57(1–2):33–41. doi:10.​1007/​s00251-005-0781-7 CrossRef
    Nielsen M, Lundegaard C, Lund O (2007) Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinform 8(1):238. doi:10.​1186/​1471-2105-8-238 CrossRef
    Patronov A, Doytchinova I (2013) T-cell epitope vaccine design by immunoinformatics. Open Biol 3(1):120–139. doi:10.​1098/​rsob.​120139 CrossRef
    Pederson GK, Sjursen H, Nostbakken JK, Jul-Larsen A, Hoschler K, Cox RJ (2014) Matrix M(TM) adjuvanted virosomal H5N1 vaccine induces balanced Th1/Th2 CD4(+) T cell responses in man. Hum Vaccines Immunother 10(8):2408–2416. doi:10.​4161/​hv.​29583 CrossRef
    Peters CJ, Sanchez A, Rollin PE, Ksiazek TG, Murphy FA (1995) Filoviridae: Marburg and Ebola viruses. In: Fields BN (ed) Fields virology. Lippincott-Raven, Philadelphia, pp 1161–1176
    Peters B, Bulik S, Tampe R, Endert PMV, Holzhutter HG (2003) Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J Immunol 171(4):1741–1749. doi:10.​4049/​jimmunol.​171.​4.​1741 CrossRef PubMed
    Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole genome sequencing. Science 287(5459):1816–1820. doi:10.​1126/​science.​287.​5459.​1816 CrossRef PubMed
    Pourrut X, Kumulungui B, Wittmann T, Moussavou G, Délicat A, Yaba P, Nkoghe D, Gonzalez JP, Leroy EM (2005) The natural history of Ebola virus in Africa. Microbes Infect 7(7–8):1005–1014. doi:10.​1016/​j.​micinf.​2005.​04.​006 CrossRef PubMed
    Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB et al (2014) Reversion of advanced Ebola virus disease in nonhuman primates with Zmapp. Nature 514:47–53. doi:10.​1038/​nature13777 PubMedCentral PubMed
    Reid S, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF (2006) Ebola virus VP24 binds karyopherin α1 and blocks STAT1 nuclear accumulation. J Virol 80(11):5156–5167. doi:10.​1128/​JVI.​02349-05 PubMedCentral CrossRef PubMed
    Rinaudo CD, Telford JL, Rappuoli R, Seib KL (2009) Vaccinology in the genomics era. J Clin Investig 119(9):2515–2525. doi:10.​1172/​JCI38330 PubMedCentral CrossRef PubMed
    Sanchez A, Geisbert TW, Feldmann H (2006) Filoviridae: Marburg and Ebola Viruses. In: Fields BN (ed) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 1409–1448
    Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541. doi:10.​1016/​j.​immuni.​2010.​09.​017 PubMedCentral CrossRef PubMed
    Sette A, Fleri W, Peters B et al (2005) A roadmap for immunomics of category A-C pathogens. Immunity 22(2):155–161. doi:10.​1016/​j.​immuni.​2005.​01.​009 CrossRef PubMed
    Simossis VA, Heringa J (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 33:W289–W294. doi:10.​1093/​nar/​gki390 PubMedCentral CrossRef PubMed
    Simossis VA, Kleinjung J, Heringa J (2005) Homology-extended sequence alignment. Nucleic Acids Res 33(3):816–824. doi:10.​1093/​nar/​gki233 PubMedCentral CrossRef PubMed
    Singh H, Ansari HR, Raghava GPS (2013) Improved method for linear B-Cell epitope prediction using antigen’s primary sequence. PLoS One 8(5):e62216. doi:10.​1371/​journal.​pone.​0062216 PubMedCentral CrossRef PubMed
    Sullivan NJ, Sanchez A, Rollin PE, Yang Z, Nabel GJ (2000) Development of a preventive vaccine for Ebola virus infection in primates. Nature 408:605–609. doi:10.​1038/​35046108 CrossRef PubMed
    Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang Z, Roederer M, Kou RA, Jahrling PB, Nabel GJ (2003) Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424:681–684. doi:10.​1038/​nature01876 CrossRef PubMed
    Sullivan NJ, Geisbert TW, Geisbert JB, Shedlock DJ, Xu L, Lamoreaux L, Custers JHHV, Popernack PM, Yang Z, Pau MG, Roederer M, Koup RA, Goudsmit J, Jahrling PB, Nabel GJ (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified Gps. PLoS Med 3(6):865–873. doi:10.​1371/​journal.​pmed.​0030177 CrossRef
    Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci 94:14764–14769. doi:10.​1073/​pnas.​94.​26.​14764 PubMedCentral CrossRef PubMed
    Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tufféry P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40(W1):W288–W293. doi:10.​1093/​nar/​gks419 PubMedCentral CrossRef PubMed
    Toussaint NC, Kohlbacher O (2009) OptiTope—a web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Research 37:W617–W622. doi:10.​1093/​nar/​gkp293 PubMedCentral CrossRef PubMed
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455–461. doi:10.​1002/​jcc.​21334 PubMedCentral PubMed
    Volchkov VE, Feldmann H, Volchkova VA, Klenk H (1998) Microbiology Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci 95:5762–5767. doi:10.​1128/​JVI.​02486-06 PubMedCentral CrossRef PubMed
    Weissenhorn W et al (1998) Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell 2(5):605–616. doi:10.​1016/​S1097-2765(00)80159-8 CrossRef PubMed
    WHO Ebola Response Team (2014) Ebola Virus Disease in West Africa—The first 9 months of the epidemic and forward projections. N Engl J Med 371:1481–1495. doi:10.​1056/​NEJMoa1411100 PubMedCentral CrossRef
    WHO-Ebola data and statistics—situation summary. http://​apps.​who.​int/​ebola/​en/​ebola-situation-reports . Accessed 9 April 2015
  • 作者单位:Pratik Narain Srivastava (1)
    Richa Jain (1)
    Shyam Dhar Dubey (2)
    Sharad Bhatnagar (2)
    Nabeel Ahmad (2)

    1. Institute of Engineering and Technology, Sitapur Road, Lucknow, India
    2. School of Biotechnology, IFTM University, Moradabad, India
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Animal Anatomy, Morphology and Histology
    Polymer Sciences
  • 出版者:Springer Netherlands
  • ISSN:1573-3904
文摘
This study aims to design epitope-based peptides for the utility of vaccine development by targeting Glycoprotein 2 (GP2) and Viral Protein 24 (VP24) of the Ebola virus (EBOV) that, respectively, facilitate attachment and fusion of EBOV with host cells. Using various databases and tools, immune parameters of conserved sequences from GP2 and VP24 proteins of different strains of EBOV were tested to predict probable epitopes. Binding analyses of the peptides with major histocompatibility complex (MHC) class I and class II molecules, population coverage, and linear B cell epitope prediction were peroformed. Predicted peptides interacted with multiple MHC alleles and illustrated maximal population coverage for both GP2 and VP24 proteins, respectively. The predicted class-I nonamers, FLYDRLAST, LFLRATTEL and NYNGLLSSI were found to cover the maximum number of MHC I alleles and showed interactions with binding energies of −7.8, −8.5 and −7.7 kcal/mol respectively. Highest scoring class II MHC binding peptides were EGAFFLYDRLASTVI and SPLWALRVILAAGIQ with binding energies of −6.2 and -5.6 kcal/mol. Putative B cell epitopes were also found on 4 conserved regions in GP2 and two conserved regions in VP24. Our in silico analysis suggests that the predicted epitopes could be a better choice as universal vaccine component against EBOV irrespective of different strains and should be subjected to in vitro and in vivo analyses for further research and development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700