Pharmacophore and docking-based hierarchical virtual screening for the designing of aldose reductase inhibitors: synthesis and biological evaluation
详细信息    查看全文
  • 作者:Bhawna Vyas ; Manjinder Singh ; Maninder Kaur ; Om Silakari…
  • 关键词:Pharmacophore mapping ; Pharmacophore ; based 3D ; QSAR ; Docking analysis ; Aldose reductase (ALR2) ; Flavonoid derivatives ; Virtual screening ; Diabetic complications
  • 刊名:Medicinal Chemistry Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:25
  • 期:4
  • 页码:609-626
  • 全文大小:1,574 KB
  • 参考文献:Aggarwal TS, Bhardwaj TR, Kumar M (2010) 3D-QSAR studies on a series of 5-arylidine-2, 4-thiazolidinediones as aldose reductase inhibitors: a self-organizing molecular field analysis approach. Med Chem 6:30–36. doi:10.​2174/​1573406107912087​18 CrossRef PubMed
    Ahluwalia VK, Aggarwal R (2004) Comprehensive practical organic chemistry: preparation and quantitative analysis, chapter: Algar–Flynn–Oyamada oxidation. Universities Press (India) Private Limited, pp 23–24
    Alexiou P, Pegklidou K, Chatzopoulou M, Nicolaou I, Demopoulos V (2009) Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem 16:734–752. doi:10.​1517/​17425255.​2014.​916277 CrossRef PubMed
    Araki E, Nishikawa T (2010) Oxidative stress: a cause and therapeutic target of diabetic complications. J Diabetes Investig 1:90–96. doi:10.​1111/​j.​2040-1124.​2010.​00013.​x PubMedCentral CrossRef PubMed
    Baker W (1933) Molecular rearrangement of some o-acyloxyacetophenones and the mechanism of the production of 3-acylchromones. J Chem Soc 10:1381–1389. doi:10.​1039/​JR9330001381 CrossRef
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi:10.​1038/​414813a CrossRef PubMed
    Caballero J (2010) 3D-QSAR (CoMFA and CoMSIA) and pharmacophore (GALAHAD) studies on the differential inhibition of aldose reductase by flavonoid compounds. J Mol Gr Model 29:363–371. doi:10.​1016/​j.​jmgm.​2010.​08.​005 CrossRef
    Dunlop M (2000) Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 58:S3–S12. doi:10.​1046/​j.​1523-1755.​2000.​07702.​x CrossRef
    El-Kabbani O, Darmanin C, Schneider TR, Hazemann I, Ruiz F, Oka M, Joachimiak A, Schulze-Briese C, Tomizaki T, Mitschler A, Podjarny A (2004) Ultrahigh resolution drug design. II. Atomic resolution structures of human aldose reductase holoenzyme complexed with Fidarestat and Minalrestat: implications for the binding of cyclic imide inhibitors. Proteins 55:805–813. doi:10.​1002/​prot.​20001 CrossRef PubMed
    El-Kabbani O, Carbone V, Darmanin C, Oka M, Mitschler A, Podjarny A, Schulze-Briese C, Chung RP (2005) Structure of aldehyde reductase holoenzyme in complex with the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity. J Med Chem 48:536–5542. doi:10.​1021/​jm050412o CrossRef
    Engerman RL (1989) Pathogenesis of diabetic retinopathy. Diabetes 38:1203–1206. doi:10.​2337/​diab.​38.​10.​1203 CrossRef PubMed
    Fernandez M, Caballero J, Helguera AM, Castro EA, Gonzalez MP (2005) Quantitative structure-activity relationship to predict differential inhibition of aldose reductase by flavonoid compounds. Bioorg Med Chem 13:3269–3277. doi:10.​1016/​j.​bmc.​2005.​02.​038 CrossRef PubMed
    Friesner RA, Banks J, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.​1021/​jm0306430 CrossRef PubMed
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. doi:10.​1161/​CIRCRESAHA.​110.​223545 PubMedCentral CrossRef PubMed
    Giannoukakis N (2014) Evaluation of ranirestat for the treatment of diabetic neuropathy. Expert Opin Drug Metab Toxicol 10:1051–1059CrossRef PubMed
    Glide, version 5.8 (2012) Schrödinger, LLC, New York
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Gr Model 20:269–276. doi:10.​1016/​S1093-3263(01)00123-1 CrossRef
    Gonzalez AM, Sochor M, Hothersall JS, McLean P (1986) Effect of aldose reductase inhibitor (sorbinil) on integration of polyol pathway, pentose phosphate pathway, and glycolytic route in diabetic rat lens. Diabetes 35:1200–1205. doi:10.​2337/​diab.​35.​11.​1200 CrossRef PubMed
    Gupta S, Singh N, Jaggi AS (2013) Evaluation of in vitro aldose reductase inhibitory potential of alkaloidal fractions of Piper nigrum, Murraya koenigii, Argemone mexicana, and Nelumbo nucifera. J Basic Clin Physiol Pharmacol 24:1–11. doi:10.​1515/​jbcpp-2013-0071 CrossRef
    Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202. doi:10.​1016/​S0163-7258(02)00298-X CrossRef PubMed
    Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882PubMed
    Henry DR, Miller MA, Güner OF (1997) American Chemical Society, 213th National Meeting, April 13–17: Paper COMP–39
    Howard EI, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. Proteins 55:792–804. doi:10.​1002/​prot.​20015 CrossRef PubMed
    Hu L, Chen G, Chau RM (2006) A neural networks-based drug discovery approach and its application for designing aldose reductase inhibitors. J Mol Gr Model 24:244–253. doi:10.​1016/​j.​jmgm.​2005.​09.​002 CrossRef
    Kador PF (1998) The role of aldose reductase in the development of diabetic complications. Med Res Rev 8:325–352CrossRef
    Kador PF, Lee JW, Fujisawa S, Blessing K, Lou MF (2000) Relative importance of aldose reductase versus nonenzymatic glycosylation on sugar cataract formation in diabetic rats. J Ocul Pharmacol Ther 16:149–160CrossRef PubMed
    Kaur M, Bahia MS, Silakari O (2012) Exploring the role of water molecules for docking and receptor guided 3D-QSAR analysis of naphthyridine derivatives as spleen tyrosine kinase (Syk) inhibitors. J Chem Inf Model 52:2619–2630. doi:10.​1021/​ci300227f CrossRef PubMed
    Kaur M, Kumari A, Bahia MS, Silakari O (2013) Designing of new multi-targeted inhibitors of spleen tyrosine kinase (Syk) and zeta-associated protein of 70 kDa (ZAP-70) using hierarchical virtual screening protocol. J Mol Gr Model 39:165–175. doi:10.​1016/​j.​jmgm.​2012.​11.​011 CrossRef
    Kinoshita JH (1990) A thirty year journey in the polyol pathway. Exp Eye Res 50:567–573. doi:10.​1016/​0014-4835(90)90096-D CrossRef PubMed
    Kinoshita JH, Varma SD, Fukui NH (1976) Aldose reductase in diabetes. Jpn J Ophthalmol 20:399–410
    Kohler EP, Chadwell HM (1941) Benzalacetophenone. Org Synth 2:1. doi:10.​15227/​orgsyn.​002.​0001
    Kurzwernhart A, Kandioller W, Bartel C, Bachler S, Trondl R, Mühlgassner G, Jakupec MA, Arion VB, Marko D, Keppler BK, Hartinger CG (2012) Targeting the DNA-topoisomerase complex in a double-strike approach with a topoisomerase inhibiting moiety and covalent DNA binder. Chem Commun 48:4839–4841. doi:10.​1039/​C2CC31040F CrossRef
    Ligprep, version 2.5 (2012) Schrödinger, LLC, New York
    Liu H, Liu S, Qin L, Mo L (2009) CoMFA and CoMSIA analysis of 2,4-thiazolidinediones derivatives as aldose reductase inhibitors. J Mol Model 15(7):837–845. doi:10.​1007/​s00894-008-0439-0 CrossRef PubMed
    Maestro, version 9.3 (2012) Schrödinger, LLC, New York
    Mahal HS, Venkataraman KJ (1934) Synthetical experiments in the chromone group. Part XIV. The action of sodamide on 1-acyloxy-2-acetonaphthones. J Chem Soc. doi:10.​1039/​JR9340001767
    Menezes MJ, Manjreker S, Pai V, Patre RE, Tilwe SG (2009) A facile microwave assisted synthesis of flavones. Indian J Chem 48:1311–1314
    Mercader AG, Duchowicz PR, Fernandez FM, Castro EA, Bennardi DO, Autino JC, Romanelli GP (2008) QSAR prediction of inhibition of aldose reductase for flavonoids. Bioorg Med Chem 16:7470–7476. doi:10.​1016/​j.​bmc.​2008.​06.​004 CrossRef PubMed
    Moon YJ, Wang X, Morris ME (2006) Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol Vitro 20:187–210. doi:10.​1016/​j.​tiv.​2005.​06.​048 CrossRef
    Nagarajan K, Zauhar R, Welsh WJ (2005) Enrichment of ligands for the serotonin receptor using the Shape Signatures approach. J Chem Inf Model 45:49–57. doi:10.​1021/​ci049746x CrossRef PubMed
    Okawa M, Kinjo J, Nohara T, Ono M (2001) DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull 24:1202–1205. doi:10.​1248/​bpb.​24.​1202 CrossRef PubMed
    Okuda J, Miwa I, Inagaki K, Horie T, Nakayama M (1982) Inhibition of aldose reductases from rat and bovine lenses by flavonoids. Biochem Pharmacol 31:3807–3822. doi:10.​1016/​0006-2952(82)90297-0 CrossRef PubMed
    Patra JC, Singh O (2009) Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus. J Comput Chem 30:2494–2508. doi:10.​1002/​jcc.​21240 CrossRef PubMed
    PHASE, version 3.4 (2012) Schrödinger, LLC, New York
    Prabhakar YS, Gupta MK, Roy N, Venkateswarlu Y (2006) A high dimensional QSAR study on the aldose reductase inhibitory activity of some flavones: topological descriptors in modeling the activity. J Chem Inf Model 46:86–92. doi:10.​1021/​ci050060u CrossRef PubMed
    QikProp, version 3.5 (2012) Schrödinger, LLC, New York
    Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8:797–807. doi:10.​2174/​0929867013373011​ CrossRef PubMed
    Richard DC, Jeffrey DB, David EP, Ildiko EF (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. QSAR 7:18–25. doi:10.​1002/​qsar.​19880070105
    Robinson WG, Kador PF, Kinoshita JH (1983) Retinal capillaries: basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221:1177–1179. doi:10.​1126/​science.​6612330 CrossRef
    Ruiz F, Hazemann I, Mitschler A, Joachimiak A, Schneider T, Karplus M, Podjarny A (2004) The crystallographic structure of the aldose reductase-IDD552 complex shows direct proton donation from tyrosine 48. Acta Crystallogr D Biol Crystallogr 60:1347–1354. doi:10.​1107/​S09074449040113 CrossRef PubMed
    Ruiz F, Hazemann I, Darmanin C, Mitschler A, Van Zandt M, Joachimiak A, El-Kabbani O, Podjarny A (2015) The crystallographic structure of Aldose Reductase IDD393 complex confirms Leu300 as a specificity determinant. doi:10.​2210/​pdb2pzn/​pdb
    Scott JA, King GL (2004) Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci 1031:204–213. doi:10.​1196/​annals.​1331.​020 CrossRef PubMed
    Silakari O, Chand S, Bahia MS (2012) Structural basis of amino pyrimidine derivatives for inhibitory activity of PKC-θ: 3D-QSAR and molecular docking studies. Mol Inf 31:659–668. doi:10.​1002/​minf.​201100123 CrossRef
    Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392. doi:10.​1210/​er.​2004-0028 CrossRef PubMed
    Steuber H (2011) An old NSAID revisited: crystal structure of aldose reductase in complex with sulindac at 1.0 Å supports a novel mechanism for its anticancer and antiproliferative effects. Chem Med Chem 6:2155–2157. doi:10.​1002/​cmdc.​201100374 CrossRef PubMed
    Steuber H, Zentgraf M, Podjarny A, Heine A, Klebe G (2006) High-resolution crystal structure of aldose reductase complexed with the novel sulfonyl-pyridazinone inhibitor exhibiting an alternative active site anchoring group. J Mol Biol 356:45–56. doi:10.​1016/​j.​jmb.​2005.​10.​067 CrossRef PubMed
    Szwergold BS, Kappler F, Brown TR (1990) Identification of fructose 3-phosphate in the lens of diabetic rats. Science 247:451–454. doi:10.​1126/​science.​2300805 CrossRef PubMed
    Van Zandt MC, Jones ML, Gunn DE, Geraci LS, Jones JH, Sawicki DR, Sredy J, Jacot JL, Dicioccio AT, Petrova T, Mitschler A, Podjarny AD (2005) Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J Med Chem 48:3141–3152. doi:10.​1021/​jm0492094 CrossRef PubMed
    Varma SD (1986) Inhibition of aldose reductase by flavonoids: possible attenuation of diabetic complications. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine: biochemical, pharmacological, and structure-activity relationships. Alan Liss R, New York, pp 343–358
    Varma SD, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids—their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513. doi:10.​1016/​0006-2952(76)90457-3 CrossRef PubMed
    Varma SD, Mikuni I, Kinoshita JH (1975) Flavonoids as inhibitors of lens aldose reductase. Science 188:1215–1216. doi:10.​1126/​science.​1145193 CrossRef PubMed
    WellsKnecht KJ, Brinkmann E, Wells-Knecht MC, Litchfield JE, Ahmed MU, Reddy S, Zyzak DV, Thorpe SR, Baynes JW (1996) New biomarkers of Maillard reaction damage to proteins. Nephrol Dial Transpl 11:41–47. doi:10.​1093/​ndt/​11.​supp5.​41 CrossRef
    Wild S, Roglic G, Green A, Sicree R, King H (2007) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053. doi:10.​2337/​diacare.​27.​5.​1047 CrossRef
    Xie W, Wang W, Su H, Xing D, Pan Y, Du L (2006) Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2. Biochem Physiol C Toxicol Pharmacol 143:429–435. doi:10.​1016/​j.​cbpc.​2006.​04.​002 CrossRef
    Young RJ, Ewing DJ, Clarke BF (1983) A controlled trial of sorbinil, an aldose reductase inhibitor, in chronic painful diabetic neuropathy. Diabetes 32:938–942. doi:10.​2337/​diab.​32.​10.​938 CrossRef PubMed
    Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) A novel automated lazy learning QSAR (ALL-QSAR) approach: method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. J Chem Inf Model 46:1984–1995. doi:10.​1021/​ci060132x PubMedCentral CrossRef PubMed
  • 作者单位:Bhawna Vyas (1)
    Manjinder Singh (2)
    Maninder Kaur (2)
    Om Silakari (2)
    Malkeet Singh Bahia (2)
    Baldev Singh (1)

    1. Department of Chemistry, Punjabi University, Patiala, Punjab, 147002, India
    2. Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences, Drug Research Punjabi University, Patiala, Punjab, 147002, India
  • 刊物主题:Pharmacology/Toxicology; Biochemistry, general; Cell Biology;
  • 出版者:Springer US
  • ISSN:1554-8120
文摘
A set of 54 studied flavonoid inhibitors of aldose reductase (ALR2) enzyme has been utilized for pharmacophore modeling and 3D-QSAR analysis using “PHASE” program of Schrödinger software. The generated pharmacophore model (AADRR.1109) was challenged to screen “PHASE” database to identify new ALR2 inhibitors. The retrieved hits were employed for docking analysis and pharmacokinetic parameter calculation to obtain orally active molecules. To predict the activity of final retrieved hits, 3D-QSAR model was developed, and the best model was selected on the basis of various statistical parameters (R train 2 0.719; Q test 2 0.647 and SD 0.663). Totally five screened molecules which showed better enhanced predicted activity were synthesized and evaluated for in vitro ALR2 inhibitory activity. All tested molecules showed ALR2 inhibitory activity (IC50) below 40 µM. Additionally, the free radical scavenging potential of synthesized molecules was also determined which played a useful role to control the progression of diabetic complications. All molecules showed good antioxidant potential, thus the designed molecules, in future, could be explored to ameliorate the development of diabetic complications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700