The dynamic architecture of the metabolic switch in Streptomyces coelicolor
详细信息    查看全文
  • 作者:Kay Nieselt (1)
    Florian Battke (1)
    Alexander Herbig (1)
    Per Bruheim (2) (3)
    Alexander Wentzel (2) (3)
    ?yvind M Jakobsen (3)
    H?vard Sletta (3)
    Mohammad T Alam (4)
    Maria E Merlo (4) (5)
    Jonathan Moore (12)
    Walid AM Omara (11)
    Edward R Morrissey (12)
    Miguel A Juarez-Hermosillo (12)
    Antonio Rodríguez-García (7) (8)
    Merle Nentwich (9)
    Louise Thomas (10)
    Mudassar Iqbal (12)
    Roxane Legaie (12)
    William H Gaze (11)
    Gregory L Challis (6)
    Ritsert C Jansen (4)
    Lubbert Dijkhuizen (5)
    David A Rand (12)
    David L Wild (12)
    Michael Bonin (13)
    Jens Reuther (9)
    Wolfgang Wohlleben (9)
    Margaret CM Smith (10)
    Nigel J Burroughs (12)
    Juan F Martín (7) (8)
    David A Hodgson (11)
    Eriko Takano (5)
    Rainer Breitling (4)
    Trond E Ellingsen (3)
    Elizabeth MH Wellington (11)
  • 刊名:BMC Genomics
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:11
  • 期:1
  • 全文大小:922KB
  • 参考文献:1. Kolter R, Siegele DA, Tormo A: The stationary phase of the bacterial life cycle. / Annu Rev Microbiol 1993, 47: 855-74. CrossRef
    2. Hesketh A, Bucca G, Laing E, Flett F, Hotchkiss G, Smith CP, Chater KF: New pleiotropic effects of eliminating a rare tRNA from Streptomyces coelicolor, revealed by combined proteomic and transcriptomic analysis of liquid cultures. / BMC Genomics 2007, 8: 261. CrossRef
    3. Hesketh A, Chen WJ, Ryding J, Chang S, Bibb M: The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). / Genome Biol 2007, 8 (8) : R161. CrossRef
    4. Huang J, Lih CJ, Pan KH, Cohen SN: Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. / Genes Dev 2001, 15 (23) : 3183-192. CrossRef
    5. Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F, Kyung YS, Sherman DH, Hu WS: Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3(2). / BMC Genomics 2008, 9: 56. CrossRef
    6. Strauch E, Takano E, Baylis HA, Bibb MJ: The stringent response in Streptomyces coelicolor A3(2). / Mol Microbiol 1991, 5 (2) : 289-98. CrossRef
    7. DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. / Science 1997, 278 (5338) : 680-86. CrossRef
    8. Reuther J, Wohlleben W: Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. / J Mol Microbiol Biotechnol 2007, 12 (1-) : 139-46. CrossRef
    9. Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A: Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). / Mol Microbiol 2002, 46 (2) : 331-47. CrossRef
    10. Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J: The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. / Mol Microbiol 2008, 67 (4) : 861-80. CrossRef
    11. Pawlik K, Kotowska M, Chater KF, Kuczek K, Takano E: A cryptic type I polyketide synthase (cpk) gene cluster in Streptomyces coelicolor A3(2). / Arch Microbiol 2007, 187 (2) : 87-9. CrossRef
    12. Takano E, Chakraburtty R, Nihira T, Yamada Y, Bibb MJ: A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). / Mol Microbiol 2001, 41 (5) : 1015-028. CrossRef
    13. Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G, Nihira T, Smith CP, Bibb M, Wohlleben W, Chater K: A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. / Mol Microbiol 2005, 56 (2) : 465-79. CrossRef
    14. Kotowska M, Pawlik K, Smulczyk-Krawczyszyn A, Bartosz-Bechowski H, Kuczek K: Type II thioesterase ScoT, associated with Streptomyces coelicolor A3(2) modular polyketide synthase Cpk, hydrolyzes acyl residues and has a preference for propionate. / Appl Environ Microbiol 2009, 75 (4) : 887-96. CrossRef
    15. Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA: A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. / Genes Dev 2003, 17 (14) : 1714-726. CrossRef
    16. Bibb MJ, Molle V, Buttner MJ: sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). / J Bacteriol 2000, 182 (16) : 4606-616. CrossRef
    17. Ryding NJ, Kelemen GH, Whatling CA, Flardh K, Buttner MJ, Chater KF: A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in Streptomyces coelicolor A3(2). / Mol Microbiol 1998, 29 (1) : 343-57. CrossRef
    18. Ohnishi Y, Seo JW, Horinouchi S: Deprogrammed sporulation in Streptomyces. / FEMS Microbiol Lett 2002, 216 (1) : 1-. CrossRef
    19. Sola-Landa A, Moura RS, Martín JF: The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. / Proc Natl Acad Sci USA 2003, 100 (10) : 6133-138. CrossRef
    20. Sola-Landa A, Rodríguez-García A, Franco-Domínguez E, Martín JF: Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor: identification of PHO boxes. / Mol Microbiol 2005, 56 (5) : 1373-385. CrossRef
    21. Rodríguez-García A, Barreiro C, Santos-Beneit F, Sola-Landa A, Martín JF: Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. / Proteomics 2007, 7 (14) : 2410-429. CrossRef
    22. Sola-Landa A, Rodríguez-García A, Apel AK, Martín JF: Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. / Nucleic Acids Res 2008, 36 (4) : 1358-368. CrossRef
    23. Feitelson JS, Malpartida F, Hopwood DA: Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). / J Gen Microbiol 1985, 131 (9) : 2431-441.
    24. Hallam SE, Malpartida F, Hopwood DA: Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. / Gene 1988, 74 (2) : 305-20. CrossRef
    25. Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ: Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). / Mol Microbiol 1992, 6 (19) : 2797-804. CrossRef
    26. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA: / Practical Streptomyces Genetics. Norwich: John Innes Foundation; 2000.
    27. Bystrykh LV, Fernandez-Moreno MA, Herrema JK, Malpartida F, Hopwood DA, Dijkhuizen L: Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). / J Bacteriol 1996, 178 (8) : 2238-244.
    28. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. / Nucleic Acids Res 2003, 31 (4) : e15. CrossRef
    29. Ihaka R, Gentleman R: R: A Language for Data Analysis and Graphics. / Journal of Computational and Graphical Statistics 2005, 5: 299-14. CrossRef
    30. Dietzsch J, Gehlenborg N, Nieselt K: Mayday--a microarray data analysis workbench. / Bioinformatics 2006, 22 (8) : 1010-012. CrossRef
  • 作者单位:Kay Nieselt (1)
    Florian Battke (1)
    Alexander Herbig (1)
    Per Bruheim (2) (3)
    Alexander Wentzel (2) (3)
    ?yvind M Jakobsen (3)
    H?vard Sletta (3)
    Mohammad T Alam (4)
    Maria E Merlo (4) (5)
    Jonathan Moore (12)
    Walid AM Omara (11)
    Edward R Morrissey (12)
    Miguel A Juarez-Hermosillo (12)
    Antonio Rodríguez-García (7) (8)
    Merle Nentwich (9)
    Louise Thomas (10)
    Mudassar Iqbal (12)
    Roxane Legaie (12)
    William H Gaze (11)
    Gregory L Challis (6)
    Ritsert C Jansen (4)
    Lubbert Dijkhuizen (5)
    David A Rand (12)
    David L Wild (12)
    Michael Bonin (13)
    Jens Reuther (9)
    Wolfgang Wohlleben (9)
    Margaret CM Smith (10)
    Nigel J Burroughs (12)
    Juan F Martín (7) (8)
    David A Hodgson (11)
    Eriko Takano (5)
    Rainer Breitling (4)
    Trond E Ellingsen (3)
    Elizabeth MH Wellington (11)

    1. Center for Bioinformatics Tübingen, Department of Information and Cognitive Sciences, University of Tübingen, Sand 14, D-72076, Tübingen, Germany
    2. Department of Biotechnology, Norwegian University of Science and Technology (NTNU), Sem S?landsvei 6-8, N-7491, Trondheim, Norway
    3. Department of Biotechnology, SINTEF Materials and Chemistry, Sem S?landsvei 2a, N-7465, Trondheim, Norway
    4. Groningen Bioinformatics Centre, University of Groningen, Kerklaan 30, 9751, NN Haren, the Netherlands
    5. Department of Microbial Physiology, University of Groningen, Kerklaan 30, 9751, NN Haren, the Netherlands
    12. Warwick Systems Biology Centre, University of Warwick, Coventry House, CV4 7AL, Coventry, UK
    11. Department of Biological Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
    7. Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real 1, 24006, León, Spain
    8. área de Microbiología, Universidad de León, Spain
    9. Department of Microbiology/Biotechnology, University of Tübingen, Auf der Morgenstelle 28, D-72076, Tübingen, Germany
    10. School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, AB25 2ZD, Aberdeen, UK
    6. Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
    13. Microarray Facility Tübingen, Calwer Strasse 7, D-72076, Tübingen, Germany
文摘
Background During the lifetime of a fermenter culture, the soil bacterium S. coelicolor undergoes a major metabolic switch from exponential growth to antibiotic production. We have studied gene expression patterns during this switch, using a specifically designed Affymetrix genechip and a high-resolution time-series of fermenter-grown samples. Results Surprisingly, we find that the metabolic switch actually consists of multiple finely orchestrated switching events. Strongly coherent clusters of genes show drastic changes in gene expression already many hours before the classically defined transition phase where the switch from primary to secondary metabolism was expected. The main switch in gene expression takes only 2 hours, and changes in antibiotic biosynthesis genes are delayed relative to the metabolic rearrangements. Furthermore, global variation in morphogenesis genes indicates an involvement of cell differentiation pathways in the decision phase leading up to the commitment to antibiotic biosynthesis. Conclusions Our study provides the first detailed insights into the complex sequence of early regulatory events during and preceding the major metabolic switch in S. coelicolor, which will form the starting point for future attempts at engineering antibiotic production in a biotechnological setting.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700