MRI distortion: considerations for MRI based radiotherapy treatment planning
详细信息    查看全文
  • 作者:Amy Walker (1) (2)
    Gary Liney (1) (2) (3)
    Peter Metcalfe (1) (2)
    Lois Holloway (1) (2) (3) (4)
  • 关键词:MRI ; Geometric distortion ; Bandwidth ; Phantom ; Radiotherapy treatment planning
  • 刊名:Australasian Physical & Engineering Sciences in Medicine
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:37
  • 期:1
  • 页码:103-113
  • 全文大小:
  • 参考文献:1. Khoo VS, Dearnaley DP, Finnigan DJ, Padhani A, Tanner SF, Leach MO (1997) Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol 42(1):1-5. doi:10.1016/s0167-8140(96)01866-x
    2. Chen L, Price JRA, Wang L, Li J, Qin L, McNeeley S, Ma CMC, Freedman GM, Pollack A (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60(2):636-47. doi:10.1016/j.ijrobp.2004.05.068
    3. Prabhakar R, Julka PK, Ganesh T, Munshi A, Joshi RC, Rath GK (2007) Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors. Jpn J Clin Oncol 37(6):405-11
    4. Baldwin LN, Wachowicz K, Thomas SD, Rivest R, Fallone BG (2007) Characterization, prediction, and correction of geometric distortion in 3 T MR images. Med Phys 34(2):388-99. doi:10.1118/1.2402331
    5. Jezzard P (2009) The physical basis of spatial distortions in magnetic resonance images. In: Bankman IN (ed) Handbook of medical image processing and analysis, 2nd edn. Elsevier, Amsterdam, pp 499-14
    6. Chang H, Fitzpatrick JM (1992) A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Trans Med Imaging 11(3):319-29
    7. Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO (2005) A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol 50(7):1343
    8. Crijns SPM, Raaymakers BW, Lagendijk JJW (2011) Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy. Phys Med Biol 56(1):289-97
    9. Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3-dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22(4):529-42. doi:10.1016/j.mri.2004.01.008
    10. Mizowaki T, Nagata Y, Okajima K, Kokubo M, Negoro Y, Araki N, Hiraoka M (2000) Reproducibility of geometric distortion in magnetic resonance imaging based on phantom studies. Radiother Oncol 57(2):237-42. doi:10.1016/s0167-8140(00)00234-6
    11. Karger CP, H?ss A, Bendl R, Canda V, Schad L (2006) Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol 51(12):N253
    12. Antolak JA, Rosen II (1999) Planning target volumes for radiotherapy: how much margin is needed? Int J Radiat Oncol Biol Phys 44(5):1165-170
    13. Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM (2004) Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 52(1):115-22. doi:10.1002/mrm.20122
    14. Baldwin LN, Wachowicz K, Fallone BG (2009) A two-step scheme for distortion rectification of magnetic resonance images. Med Phys 36(9):3917-926
    15. Bakker CJG, Moerland MA, Bhawandien R, Beersma R (1992) Analysis of machine-dependent and object-induced geometric distortion in 2DFT MR imaging. Magn Reson Imaging 10(4):597-08. doi:10.1016/0730-725x(92)90011-n
    16. Petersch B, Bogner J, Fransson A, Lorang T, P?tter R (2004) Effects of geometric distortion in 0.2?T MRI on radiotherapy treatment planning of prostate cancer. Radiother Oncol 71(1):55-4. doi:10.1016/j.radonc.2003.12.012
    17. Stanescu T, Jans HS, Wachowicz K, Fallone BG (2010) Investigation of a 3D system distortion correction method for MR images. J Appl Clin Med Phys 11(1):2961
    18. Stanescu T, Hans-Sonke J, Stavrev P, Fallone BG (2006) 3T MR-based treatment planning for radiotherapy of brain lesions. Radiol Oncol 40(2):125-32
    19. Crijns SPM, Bakker CJG, Seevinck PR, de Leeuw H, Lagendijk JJW, Raaymakers BW (2012) Towards inherently distortion-free MR images for image-guided radiotherapy on an MRI accelerator. Phys Med Biol 57(5):1349
    20. Zhang B, MacFadden D, Damyanovich AZ, Rieker M, Stainsby J, Bernstein M, Jaffray DA, Mikulis D, Menard C (2010) Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning. Phys Med Biol 55(1):6601-615. doi:10.1088/0031-9155/55/22/002
    21. Chen H–H, Boykin RD, Clarke GD, Gao JHT, Roby JW III (2006) Routine testing of magnetic field homogeneity on clinical MRI systems. Med Phys 33(11):4299-306
    22. AAPM (1990) Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No 1. Med Phys 17(2):287-95. doi:10.1118/1.596566
    23. Moerland MA (1996) Magnetic resonance imaging in radiotherapy treatment planning. University Utrecht, Utrecht
    24. Devic S (2012) MRI simulation for radiotherapy treatment planning. Med Phys 39(11):6701-711. doi:10.1118/1.4758068
  • 作者单位:Amy Walker (1) (2)
    Gary Liney (1) (2) (3)
    Peter Metcalfe (1) (2)
    Lois Holloway (1) (2) (3) (4)

    1. Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
    2. Liverpool and Macarthur Cancer Therapy Centres, Ingham Institute, Liverpool, NSW, 2170, Australia
    3. South West Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
    4. Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
  • ISSN:1879-5447
文摘
Distortion in magnetic resonance images needs to be taken into account for the purposes of radiotherapy treatment planning (RTP). A commercial MRI grid phantom was scanned on four different MRI scanners with multiple sequences to assess variations in the geometric distortion. The distortions present across the field of view were then determined. The effect of varying bandwidth on image distortion and signal to noise was also investigated. Distortion maps were created and these were compared to the location of patient anatomy within the scanner bore to estimate the magnitude and distribution of distortions located within specific clinical regions. Distortion magnitude and patterns varied between MRI sequence protocols and scanners. The magnitude of the distortions increased with increasing distance from the isocentre of the scanner within a 2D imaging plane. Average distortion across the phantom generally remained below 2.0?mm, although towards the edge of the phantom for a turbo spin echo sequence, the distortion increased to a maximum value of 4.1?mm. Application of correction algorithms supplied by each vendor reduced but did not completely remove distortions. Increasing the bandwidth of the acquisition sequence decreased the amount of distortion at the expense of a reduction in signal-to-noise ratio of 13.5 across measured bandwidths. Imaging protocol parameters including bandwidth, slice thickness and phase encoding direction, should be noted for distortion investigations in RTP since each can influence the distortion. The magnitude of distortion varies across different clinical sites.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700