Holographic quenches towards a Lifshitz point
详细信息    查看全文
  • 作者:Giancarlo Camilo ; Bertha Cuadros-Melgar ; Elcio Abdalla
  • 关键词:Gauge ; gravity correspondence ; AdS ; CFT Correspondence ; Holography and condensed matter physics (AdS/CMT)
  • 刊名:Journal of High Energy Physics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:2016
  • 期:2
  • 全文大小:872 KB
  • 参考文献:[1]S. Mondal, D. Sen and K. Sengupta, Non-equilibrium dynamics of quantum systems: order parameter evolution, defect generation, and qubit transfer, Lecture Notes in Physics volume 802, Psringer, Germany (2010), arXiv:​0908.​2922 .
    [2]A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:​1007.​5331 ] [INSPIRE ].CrossRef ADS
    [3]P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/​0503393 ] [INSPIRE ].
    [4]P. Calabrese and J.L. Cardy, Time-dependence of correlation functions following a quantum quench, Phys. Rev. Lett. 96 (2006) 136801 [cond-mat/​0601225 ] [INSPIRE ].
    [5]C. de Grandi, V. Gritsev and A. Polkovnikov, Quench dynamics near a quantum critical point, Phys. Rev. B 81 (2010) 012303 [arXiv:​0909.​5181 ].CrossRef ADS
    [6]P. Calabrese and J. Cardy, Quantum quenches in extended systems, J. Stat. Mech. 0706 (2007) P06008 [arXiv:​0704.​1880 ] [INSPIRE ].MathSciNet
    [7]J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to a steady state, Adv. Phys. 59 (2010) 1063 [arXiv:​0912.​4034 ].CrossRef ADS
    [8]J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/​9711200 ] [INSPIRE ].CrossRef MathSciNet MATH
    [9]S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/​9802109 ] [INSPIRE ].CrossRef ADS MathSciNet
    [10]E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/​9802150 ] [INSPIRE ].ADS MathSciNet MATH
    [11]A. Adams, L.D. Carr, T. Schäfer, P. Steinberg and J.E. Thomas, Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality, New J. Phys. 14 (2012) 115009 [arXiv:​1205.​5180 ] [INSPIRE ].CrossRef ADS MathSciNet
    [12]T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:​1008.​3027 ] [INSPIRE ].CrossRef ADS
    [13]J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:​1109.​3571 ] [INSPIRE ].CrossRef ADS MathSciNet
    [14]P. Basu and S.R. Das, Quantum quench across a holographic critical point, JHEP 01 (2012) 103 [arXiv:​1109.​3909 ] [INSPIRE ].CrossRef ADS
    [15]P. Basu, D. Das, S.R. Das and T. Nishioka, Quantum quench across a zero temperature holographic superfluid transition, JHEP 03 (2013) 146 [arXiv:​1211.​7076 ] [INSPIRE ].CrossRef ADS MathSciNet
    [16]A. Buchel, L. Lehner and R.C. Myers, Thermal quenches in N = 2∗ plasmas, JHEP 08 (2012) 049 [arXiv:​1206.​6785 ] [INSPIRE ].CrossRef ADS
    [17]H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, Phys. Rev. D 89 (2014) 066012 [arXiv:​1311.​1200 ] [INSPIRE ].ADS
    [18]N. Callebaut et al., Holographic quenches and fermionic spectral functions, JHEP 10 (2014) 172 [arXiv:​1407.​5975 ] [INSPIRE ].CrossRef ADS MathSciNet
    [19]M. Rangamani, M. Rozali and A. Wong, Driven holographic CFTs, JHEP 04 (2015) 093 [arXiv:​1502.​0572 ].CrossRef ADS MathSciNet
    [20]V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:​1110.​5035 ] [INSPIRE ].ADS
    [21]J. Sonner, A. del Campo and W.H. Zurek, Universal far-from-equilibrium dynamics of a holographic superconductor, arXiv:​1406.​2329 [INSPIRE ].
    [22]S.R. Das, D.A. Galante and R.C. Myers, Universal scaling in fast quantum quenches in conformal field theories, Phys. Rev. Lett. 112 (2014) 171601 [arXiv:​1401.​0560 ] [INSPIRE ].CrossRef ADS
    [23]S.R. Das, D.A. Galante and R.C. Myers, Universality in fast quantum quenches, JHEP 02 (2015) 167 [arXiv:​1411.​7710 ] [INSPIRE ].CrossRef ADS MathSciNet
    [24]A. Buchel, R.C. Myers and A. van Niekerk, Nonlocal probes of thermalization in holographic quenches with spectral methods, JHEP 02 (2015) 017 [Erratum ibid. 07 (2015) 137] [arXiv:​1410.​6201 ] [INSPIRE ].
    [25]H. Liu and S.J. Suh, Entanglement tsunami: universal scaling in holographic thermalization, Phys. Rev. Lett. 112 (2014) 011601 [arXiv:​1305.​7244 ] [INSPIRE ].CrossRef ADS
    [26]X. Gao, A.M. Garcia-Garcia, H.B. Zeng and H.-Q. Zhang, Normal modes and time evolution of a holographic superconductor after a quantum quench, JHEP 06 (2014) 019 [arXiv:​1212.​1049 ] [INSPIRE ].CrossRef ADS
    [27]A.M. Garcıa-Garc´ıa, H.B. Zeng and H.Q. Zhang, A thermal quench induces spatial inhomogeneities in a holographic superconductor, JHEP 07 (2014) 096 [arXiv:​1308.​5398 ] [INSPIRE ].
    [28]X. Bai, B.-H. Lee, L. Li, J.-R. Sun and H.-Q. Zhang, Time evolution of entanglement entropy in quenched holographic superconductors, JHEP 04 (2015) 066 [arXiv:​1412.​5500 ] [INSPIRE ].CrossRef ADS MathSciNet
    [29]U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/​9912209 ] [INSPIRE ].CrossRef ADS MathSciNet
    [30]S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:​0904.​0464 ] [INSPIRE ].CrossRef ADS MathSciNet
    [31]E. Caceres, A. Kundu, J.F. Pedraza and D.-L. Yang, Weak field collapse in AdS: introducing a charge density, JHEP 06 (2015) 111 [arXiv:​1411.​1744 ] [INSPIRE ].CrossRef ADS MathSciNet
    [32]J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:​1006.​4090 ] [INSPIRE ].CrossRef ADS
    [33]H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:​1010.​5443 [INSPIRE ].
    [34]P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:​0906.​4426 ] [INSPIRE ].ADS
    [35]D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On field theory thermalization from gravitational collapse, JHEP 02 (2012) 119 [arXiv:​1110.​5823 ] [INSPIRE ].CrossRef ADS MathSciNet
    [36]V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:​1012.​4753 ] [INSPIRE ].CrossRef ADS
    [37]V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:​1103.​2683 ] [INSPIRE ].ADS
    [38]D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:​1205.​1548 ] [INSPIRE ].CrossRef ADS
    [39]E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:​1205.​2354 ] [INSPIRE ].CrossRef ADS
    [40]G. Camilo, B. Cuadros-Melgar and E. Abdalla, Holographic thermalization with a chemical potential from Born-Infeld electrodynamics, JHEP 02 (2015) 103 [arXiv:​1412.​3878 ] [INSPIRE ].CrossRef ADS MathSciNet
    [41]A. Giordano, N.E. Grandi and G.A. Silva, Holographic thermalization of charged operators, JHEP 05 (2015) 016 [arXiv:​1412.​7953 ] [INSPIRE ].CrossRef ADS MathSciNet
    [42]X. Zeng and W. Liu, Holographic thermalization in Gauss-Bonnet gravity, Phys. Lett. B 726 (2013) 481 [arXiv:​1305.​4841 ] [INSPIRE ].CrossRef ADS MathSciNet
    [43]X.-X. Zeng, X.-M. Liu and W.-B. Liu, Holographic thermalization with a chemical potential in Gauss-Bonnet gravity, JHEP 03 (2014) 031 [arXiv:​1311.​0718 ] [INSPIRE ].CrossRef ADS
    [44]S.J. Zhang and E. Abdalla, Holographic thermalization in charged dilaton Anti-de Sitter spacetime, Nucl. Phys. B 896 (2015) 569 [arXiv:​1503.​0770 ].CrossRef ADS MathSciNet
    [45]S.-J. Zhang, B. Wang, E. Abdalla and E. Papantonopoulos, Holographic thermalization in Gauss-Bonnet gravity with de Sitter boundary, Phys. Rev. D 91 (2015) 106010 [arXiv:​1412.​7073 ] [INSPIRE ].ADS
    [46]P. Fonda, L. Franti, V. Keränen, E. Keski-Vakkuri, L. Thorlacius and E. Tonni, Holographic thermalization with Lifshitz scaling and hyperscaling violation, JHEP 08 (2014) 051 [arXiv:​1401.​6088 ] [INSPIRE ].CrossRef ADS
    [47]M. Alishahiha, A.F. Astaneh and M.R.M. Mozaffar, Thermalization in backgrounds with hyperscaling violating factor, Phys. Rev. D 90 (2014) 046004 [arXiv:​1401.​2807 ] [INSPIRE ].ADS
    [48]X.-X. Zeng, X.-M. Liu and W.-B. Liu, Holographic thermalization in noncommutative geometry, Phys. Lett. B 744 (2015) 48 [arXiv:​1407.​5262 ] [INSPIRE ].CrossRef ADS MathSciNet
    [49]I. Aref’eva, A. Bagrov and A.S. Koshelev, Holographic thermalization from Kerr-AdS, JHEP 07 (2013) 170 [arXiv:​1305.​3267 ] [INSPIRE ].CrossRef ADS MathSciNet
    [50]V.E. Hubeny and H. Maxfield, Holographic probes of collapsing black holes, JHEP 03 (2014) 097 [arXiv:​1312.​6887 ] [INSPIRE ].CrossRef ADS
    [51]S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:​0903.​3246 ] [INSPIRE ].CrossRef ADS MathSciNet
    [52]S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:​0808.​1725 ] [INSPIRE ].ADS MathSciNet
    [53]M. Taylor, Non-relativistic holography, arXiv:​0812.​0530 [INSPIRE ].
    [54]W. Chemissany and I. Papadimitriou, Lifshitz holography: the whole shebang, JHEP 01 (2015) 052 [arXiv:​1408.​0795 ] [INSPIRE ].CrossRef ADS
    [55]J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic models for theories with hyperscaling violation, JHEP 04 (2013) 159 [arXiv:​1212.​3263 ] [INSPIRE ].CrossRef ADS
    [56]B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:​1212.​2625 ] [INSPIRE ].CrossRef ADS
    [57]T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz gravity for Lifshitz holography, Phys. Rev. Lett. 110 (2013) 081602 [arXiv:​1211.​4872 ] [INSPIRE ].CrossRef ADS
    [58]A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:​1008.​2062 ] [INSPIRE ].CrossRef ADS MathSciNet
    [59]W. Chemissany and J. Hartong, From D3
    anes to Lifshitz space-times, Class. Quant. Grav. 28 (2011) 195011 [arXiv:​1105.​0612 ] [INSPIRE ].CrossRef ADS MathSciNet
    [60]M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography, JHEP 01 (2014) 057 [arXiv:​1311.​6471 ] [INSPIRE ].CrossRef ADS MathSciNet
    [61]Y. Korovin, K. Skenderis and M. Taylor, Lifshitz as a deformation of Anti-de Sitter, JHEP 08 (2013) 026 [arXiv:​1304.​7776 ] [INSPIRE ].CrossRef ADS MathSciNet
    [62]Y. Korovin, K. Skenderis and M. Taylor, Lifshitz from AdS at finite temperature and top down models, JHEP 11 (2013) 127 [arXiv:​1306.​3344 ] [INSPIRE ].CrossRef ADS
    [63]M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:​1008.​1991 ] [INSPIRE ].CrossRef ADS
    [64]D. Boyanovsky and J.L. Cardy, Critical behavior of m-component magnets with correlated impurities, Phys. Rev. B 26 (1982) 154 [INSPIRE ].CrossRef ADS
    [65]A.W.W. Ludwig, M.P.A. Fisher, R. Shankar and G. Grinstein, Integer quantum Hall transition: An alternative approach and exact results, Phys. Rev. B 50 (1994) 7526.CrossRef ADS
    [66]J. Ye and S. Sachdev, Coulomb interactions at quantum Hall critical points of systems in a periodic potential, Phys. Rev. Lett. 80 (1998) 5409 [cond-mat/​9712161 ].
    [67]I.F. Herbut, Interactions and phase transitions on graphene’s honeycomb lattice, Phys. Rev. Lett. 97 (2006) 146401 [cond-mat/​0606195 ] [INSPIRE ].
    [68]D.T. Son, Quantum critical point in graphene approached in the limit of infinitely strong Coulomb interaction, cond-mat/​0701501 [INSPIRE ].
    [69]I.F. Herbut, Critical exponents at the superconductor-insulator transition in dirty-boson systems, Phys. Rev. B 61 (2000) 14723 [cond-mat/​0001040 ].CrossRef ADS
    [70]J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:​0807.​1100 ] [INSPIRE ].CrossRef ADS MathSciNet
    [71]S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS in three-dimensions ×S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/​9804166 ] [INSPIRE ].CrossRef ADS MathSciNet
    [72]B. Biran, A. Casher, F. Englert, M. Rooman and P. Spindel, The fluctuating seven sphere in eleven-dimensional supergravity, Phys. Lett. B 134 (1984) 179 [INSPIRE ].CrossRef ADS MathSciNet
    [73]H.J. Kim, L.J. Romans and P. van Nieuwenhuizen, The mass spectrum of chiral N = 2 D=10 supergravity on S 5,Phys. Rev. D 32 (1985) 389 [INSPIRE ].ADS
    [74]S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/​0002230 ] [INSPIRE ].CrossRef ADS MATH
    [75]S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:​0907.​1846 ] [INSPIRE ].CrossRef ADS MathSciNet
    [76]M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/​0112119 ] [INSPIRE ].CrossRef ADS MathSciNet
    [77]I. Booth, Black hole boundaries, Can. J. Phys. 83 (2005) 1073 [gr-qc/​0508107 ] [INSPIRE ].CrossRef ADS
    [78]S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/​0603001 ] [INSPIRE ].CrossRef ADS MathSciNet
    [79]V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:​0705.​0016 ] [INSPIRE ].CrossRef ADS MathSciNet
    [80]H. Liu and M. Mezei, A refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:​1202.​2070 ] [INSPIRE ].CrossRef ADS MathSciNet
  • 作者单位:Giancarlo Camilo (1)
    Bertha Cuadros-Melgar (2)
    Elcio Abdalla (1)

    1. Instituto de Física, Universidade de São Paulo, C.P. 66318, CEP: 05315-970, São Paulo, Brasil
    2. Escola de Engenharia de Lorena, Universidade de São Paulo, Estrada Municipal do Campinho S/N, CEP: 12602-810, Lorena, Brasil
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1029-8479
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700